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ABSTRACT 

 “Megacities” are characterized by large populations (at least 10 million) and 

interdependent infrastructure, demographic, economic, and government networks (the 

four pillars). To be successful in future operations, the military must expand its 

understanding of megacities and their networks. In particular the Joint Warfare Analysis 

Center (JWAC) is interested in these megacity networks and their implications for 

potential urban operations. We develop a methodology to group like megacities into five 

clusters. With 33 variables describing the four pillars, we construct a data set using over 

90 data sources for 41 large urban areas. This work greatly expands previous work in 

both the number of cities studied and the number of variables used. We also study 

clustering sensitivity to missing values by generating an ensemble of 5,000 clusterings 

based on randomly imputed missing values. We compare these to clustering without 

imputation, the ensemble consensus or average clustering, and clusterings from previous 

studies in addition to identifying which cities are sensitive to missing values. Our work 

not only informs JWAC of the similarities and differences between the 41 cities studied, 

it provides a method to identify for which cities, more data collection is warranted, and it 

provides a blueprint for future work in this area. 
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EXECUTIVE SUMMARY 

As the U.S. military prepares for the future, senior leaders and analysts alike 

expect that urban environments will play an increasing role in the operations we conduct, 

as outlined in the U.S. Army’s Strategic Studies Group report on six megacity case 

studies (United States Army, 2014). People are migrating to urban areas and the littorals 

at an increasing rate, which makes understanding the structure and unique challenges of 

working in these densely populated regions important. These metropolitan areas are 

characterized by large populations (at least 10 million) and interdependent 

infrastructure, demographic, economic, and government networks (the four pillars). As a 

result, the Joint Warfare Analysis Center (JWAC) is interested in identifying how 

these interdependent networks influence a megacity due to the implications of potential 

kinetic or non-kinetic urban operations. 

We develop and implement a methodology to classify megacities into groups. 

Using 33 variables, we construct a data set from over 90 publically available sources for 

41 different large urban areas and group them into five categories using statistical 

clustering techniques. Due to missing values, we establish five base clusters using the 

original data. Then, we use k-nearest neighbor (K-NN)  (Kowarik & Templ, 2016) 

quantile sampling to randomly impute missing values yielding an ensemble of 5,000 

clusterings. Using methods from Hornik (2005), we use this ensemble to identify which 

city cluster memberships are sensitive to changes in values not available in the original 

data. Our results produce an average hard grouping of cities, or consensus clustering, that 

is robust to missing data as well as soft clustering identifying the uncertainties associated 

with a city’s cluster membership. This work helps provide JWAC insights into how the 

41 large urban areas are similar or different in addition to a framework for future such 

studies. 

We show the resulting average clustering from our analysis in Table ES-1. The 

average groupings are generally robust to missing data, as we show by identifying the 

differences between the original data and the imputed data. The cities that are not 

highlighted represent cities that remain in the same cluster as their baseline grouping, 
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whereas the cities highlighted in yellow change when the missing data is imputed. The 

number in brackets next to the highlighted cities indicates the cluster from which the 

observation moved. We see that all of the movement comes from cluster 4 because 

Nairobi, Baghdad, and Mexico City each shift to cluster 5 with more destabilized regions.  

Table ES-1. Average Clustering Using K-NN Quantile Sampling.  

Cluster 1 (10) Cluster 2 (6) Cluster 3 (6) Cluster 4 (9) Cluster 5 (10) 
New York 
Los Angeles 
Chicago 
Washington, DC 
Dallas-FW 
Philadelphia 
San Francisco 
Boston 
Toronto 
London 

Beijing 
Tianjin 
Shanghai 
Chongqing 
São Paulo 
Rio de Janeiro 

Delhi 
Mumbai 
Kolkata 
Bangalore 
Hyderabad 
Johannesburg 

Lagos 
Jakarta 
Bangkok 
Manila 
Moscow 
Istanbul 
Buenos Aires 
Lima 
Ho Chi Minh City 

Cairo 
Kinshasa 
Karachi 
Al-Riyadh 
Tehran 
Kabul 
Dhaka 
Nairobi[4] 
Baghdad[4] 
Mexico City[4]

Table ES-1 outlines our consensus (average) clustering after we generate 5,000 samples of data 
with imputed missing values. The cities in yellow indicate cities that shifted clusters from our 
original result with missing values. The brackets indicate the original cluster to which they 
belong.  

Cities in Latin America, Africa, the Middle East, and Asia continue to represent 

the arc of instability (AOI), and clearly cluster together based on their characteristics. 

Therefore, our results inform the challenges of the AOI. We find that many of the cities 

within the AOI cluster with others in the AOI, and cities outside the AOI tend to cluster 

with other cities outside the AOI. We analytically show regions and particular cities that 

face greater risks due to their shortfalls in the infrastructure, government, economic, and 

demographic pillars by understanding the cities with which they cluster. As a result, 

JWAC and other agencies within Department of Defense (DOD) can request more 

targeted intelligence collection or conduct more effective information operations. 

Simultaneously, our work shows the need for combatant commands to work in 

coordination. Each cluster of similar cities contains large urban areas from different 

combatant commands. And, while we cannot predict with certainty the actual areas where 
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instability or conflict will arise given current data limitations, we can move the discussion 

forward and identify the areas where effort can increase.  
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I. INTRODUCTION 

As the U.S. military prepares for the future, senior leaders and analysts alike 

expect that urban environments will play an increasing role in the operations we conduct. 

People are migrating to urban areas and the littorals at an increasing rate, which makes 

understanding the structure and unique challenges of working in these densely populated 

regions increasingly important. We use a combination of clustering techniques and 

sensitivity analysis to methodically categorize megacities and large urban areas using a 

data set constructed using over 90 sources that includes 41 cities throughout the world. 

This analysis is intended to inform the Joint Warfare Analysis Center (JWAC) on the 

relationships between megacities and provide insights into the ways in which they are 

similar or different. It also provides JWAC with a blue print for this type of analysis. 

Specifically, we give the details and reasoning for how we construct the data set and 

show how to handle and understand the effects of the inevitable missing values.  

A. BACKGROUND 

JWAC is responsible for providing senior leaders including the joint staff, 

combatant commanders, and other key stakeholders with effects-based analysis and 

targeting options for various critical infrastructure networks. These analyses provide key 

decision makers with immediate options to support their operational objectives, as 

outlined in the JWAC mission statement. JWAC uses data from the intelligence 

community to analyze these networks at all levels and develop the targeting picture. 

However, the intelligence community does not possess the time or resources to provide 

JWAC with all of the network detail essential to determining exactly how local networks 

are structured and which nodes are connected. This limits JWAC’s ability to identify 

critical nodes and understand precisely the follow-on effects of node interdiction. To 

reduce the burden on collection and achieve intended results, JWAC focuses its efforts on 

key components of critical infrastructure, including telecommunications networks and 

data centers, oil and gas production and distribution, power generation, and the electro-

fiber backbone. Even when focusing on these few key networks, however, identifying 
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and synthesizing data proves to be a virtually insurmountable task for regions as complex 

as megacities. 

Currently, over half of the global population lives in large urban areas (Kilcullen, 

2013). As population growth continues, analysts predict that most future growth will take 

place in metropolitan areas (Kilcullen, 2013; United States Army, 2014). Furthermore, 

Kilcullen (2013) asserts that low-income regions of Asia, Africa, and Latin America will 

be the primary recipients of the growth as well as the instability that often results from 

struggles for resources in densely populated, poorly governed areas. These realities 

increase the likelihood that U.S. forces will be required to operate in densely populated 

urban terrain in future operations.  

Often referred to as megacities, these densely populated urban areas are 

characterized by a total population of at least 10 million. They may vary widely, 

however, in terms of infrastructure, demographics, and economic development. With 

limited resources and intelligence collection capacity, it is virtually impossible for U.S. 

forces to create a repository of the data necessary to conduct interdependent network 

analysis on each city we may be required to enter. Moreover, even if perfect information 

is available, it often requires too much time to collect and process in order to be 

actionable. Our potential adversaries are dynamic, and as the security environment and 

risks continue to evolve, it will be beneficial for the military to have general insights and 

adaptive solutions for managing operations in destabilized regions of the world.  

Much of the current literature discusses cities located within the arc of instability, 

an area of strategic importance to U.S. forces and the focus of this paper. The arc of 

instability was originally defined in Barnett (2004) and included large portions of Asia 

and Africa as well as parts of Central and South America. It represents parts of the 

developing world where competition for resources, terrorism, political instability, and 

economic inequality make conditions ripe for conflict leading it to become a staple of 

American foreign policy decisions since the early 2000s (United States Marine Corps, 

2015; Barnett, 2004). Barnett (2004) elected to not include India and western China; 

however, when defined in United States Marine Corps (2015), the arc of instability 

includes a portion of western China as well as all of India. For the purposes of our study, 
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we will use the arc of instability depicted in United States Marine Corps (2014) and 

United States Marine Corps (2015), both of which show India being within the arc of 

instability as shown in Figure 1. In addition to the basic diagram with the arc of 

instability, Figure 1 also shows all 36 cities that meet the megacity definition in 2015. 

Those within the arc appear red; those outside the arc appear green. 

Figure 1.  Arc of Instability. Adapted from United States Marine Corps (2014). 

Figure 1 shows a visual depiction of the arc of instability (AOI) taken from a 
Headquarters Marine Corps Current Operations Brief which was updated in October of 
2014. This depiction is a follow-on to the version displayed in Barnett (2004). We 
overlay the locations of current megacities on top of the map depicted. 

Half of all global megacities reside within the arc of instability—and that number 

is slated to grow. As depicted in Figure 1, the arc of instability encompasses most of 

Africa and Asia and a small portion of Latin America. According to the United Nations’ 

World Population Prospects (2015), the top nine countries expected to contribute the 

most to world population growth between 2015 and 2050 include India, Nigeria, 

Pakistan, Democratic Republic of the Congo, Ethiopia, United Republic of Tanzania, 

United States, Indonesia and Uganda. And, of these, only the United States does not 

currently reside within the arc. It is easy to see that the urban environments in the arc of 

instability will continue to increase in importance in the eyes of defense senior leaders 
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over the next decade, which means that organizations like JWAC must understand their 

complex dynamics now.  

To begin developing its understanding of the structure of various megacities and 

how their interdependent human and infrastructure networks interact, JWAC has taken an 

interest in identifying which nodes of these interdependent networks are the most critical 

and how that knowledge can be exploited to provide sound targeting options for senior 

leaders and decision makers. Today and in the future, the connectedness of cities and the 

instant transmission of information through the Internet magnify every action taken by 

military forces. As a result, commanders are increasingly sensitive to collateral damage 

and civilian casualties, particularly in densely populated megacities where there are 

thousands of people per square mile. Simultaneously, the interdependent infrastructure 

also increases the risk of unintended consequences.  

Prime examples of these follow-on consequences occurred in the aftermath of the 

terrorist attacks on September 11, 2001. In addition to the deaths of 2,996 civilians and 

the physical destruction of the World Trade Center and a section of the Pentagon, one of 

the follow-on consequences of the attack was significant network disruption. As 

identified in Moss and Townsend (2005), the major cellular network carriers reported to 

the Federal Communications Commission (FCC) a ten-fold increase in call volumes in 

the moments following the attacks. This level of congestion in the network led to a 92% 

block rate on New York City’s wireless telephone networks. Simultaneously, the attacks 

caused extreme disruption to the local transportation network, as well as incoming U.S. 

air traffic.  

While the events of September 11 represent a large-scale complex attack, the 

concepts also apply to the small-scale targeted strikes that our forces will execute. Hence, 

in addition to developing an understanding of the interdependencies in these networks, 

JWAC requires support in determining what risks we face regarding these unintended 

consequences. While there has been some work studying the effects of disrupting 

interconnected networks (e.g., Dickenson, 2014), it is virtually impossible to study them 

without a full data set of network information including network interactions. However, it 

is possible to gain insight about a particular city based on the cities which have similar 
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networks. Thus, in this thesis, we construct a data set from publically available sources 

that capture key features of megacity networks and then show how to use this data to find 

groups of similar megacities. 

B. CLUSTERING  

In order to produce megacity groups for JWAC, we use statistical clustering 

methods that are easily implemented and understood. More importantly, they are also 

well suited to the types of data used to describe megacities network features. Our study 

focuses on clustering via a partitioning method, which involves using the data to identify 

which observations are most similar and placing them in the same group or partition. The 

key to partitioning methods, and indeed most clustering methods, is the choice of how to 

measure the distance or dissimilarity between observations (in this case cities). This 

choice is particularly difficult in the data contain mixed numeric and categorical variables 

with missing values, as is the case with our megacity dataset. We use Gower’s distance 

(Gower, 1971) to measure the inter-point distances between pairs of cities and then 

cluster those that are closest together using the partitioning around medoids (PAM) 

algorithm (Kaufman & Rousseuw, 1990). Another key benefit to this type of analysis is 

that it does not require a specific hypothesis test or design of experiments in order to be 

effective and provide insights into the data. It is designed to be a non-parametric form of 

exploratory analysis, which provides us with more flexibility without comprising the 

integrity of the data. We recommend readers see Kaufman and Rousseeuw (1990) for a 

review of clustering analysis.  

C. OBJECTIVES AND LIMITATIONS 

Because we do not have access to the amount and type of data necessary to 

achieve all of the goals expressed by JWAC, we will use proxies for the detailed network 

information that will allow us to establish a framework and building blocks for future 

work. We accomplish this by using meta-data from a selection of large cities around the 

globe to classify megacities into groups based on their infrastructure, demographic, 

government, and economic characteristics, which we refer to as “the four pillars.” 

Further, because data uncertainty and missing information are unavoidable, we randomly 
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impute missing values using a k-nearest neighbor (K-NN) method that we then use to 

construct and ensemble of clusterings. This ensemble is used to determine how sensitive 

the megacity groupings, or clusters, are to missing information. Through clustering and 

imputation, we can then provide JWAC with a tool that allows them to gain insight about 

megacities less understood by identifying key characteristics and comparing them to 

megacities for which we have more robust data. JWAC can also then use the cluster 

memberships to conduct case studies using those cities with each cluster that have a 

repository of detailed network information. 

As with any study, the availability and quality of the data limits what we are able 

to achieve with our analysis. Our data set contains information for 41 cities across the 

globe, and some cities possess more complete and reliable information than others. An 

important part of our results are how we decide which data to use and how we mitigate 

the effects of missing data by using a combination of clustering techniques that are robust 

to missing values. A sensitivity analysis then enables us to understand the impacts of 

uncertainty due to those values.  

D. THESIS ORGANIZATION 

In Chapter II, we address the current literature discussing the megacities and their 

networks as well as some of the modeling techniques that have been applied to 

understanding them. We also describe how our work adds to the discussion and deepens 

our collective understanding of the unique challenges associated with studying 

megacities. In Chapter III, we describe how we decide which variables to use, how we 

collect the data, and particular challenges we face in collecting data. We address our 

methodology in Chapter IV including how we calculate the distances between 

observations, the algorithm we select, and our data imputation technique. The results and 

analysis for our study appear in Chapter V where we show our baseline clusters, how the 

clusters shift when we impute missing values, the variability in the clustering ensembles, 

and the consensus (average) clustering resulting from our sensitivity analysis. Finally, we 

use Chapter VI for conclusions and to address where future researchers can further 

contribute to the study of megacities. 
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II. LITERATURE REVIEW

While the notion of megacities remains a relatively new concept and literature on 

tackling its myriad challenges is limited, researchers have conducted substantial research 

on interdicting and protecting various individual infrastructure networks. Because our 

focus is not network analysis or optimization, we will not address the matter in 

significant detail. In this chapter, we will, however, examine the analysis conducted by 

Dickerson (2014) in order to illustrate the type of research our work seeks to augment 

and support. We will also explore recent work conducted by the U.S. Marine Corps and 

U.S. Army as both services begin to look closely at the role megacities will play in their 

future operations. Finally, we review recent work in grouping like megacities.  

A. NETWORK INTERDICTION 

Dickenson (2014) uses optimization to examine the interdependence of a power 

network and its fuel network, where some network nodes are interdependent and some 

are not. To do this, he develops separate mixed-integer programs for each system, 

combines them, and then minimizes the total operating cost for the two systems. He uses 

scenarios to determine the impacts of losing a nuclear power plant. His results indicate 

that power losses may be spread across any subset of the nodes unless the interdependent 

nodes are penalized for losing power (Dickenson, 2014). This demonstrates the 

importance of defending nodes that are known to directly impact other critical 

infrastructure nodes. However, a key challenge with megacities is that the full network is 

virtually never known and incorporates many other factors such as water, transportation, 

telecommunications networks, as well as other elements that cannot be modeled easily 

using linear or nonlinear programs, such as the impact of the economy or government 

services on the same system. This provides some of the underlying justification for our 

approach. By using meta-data for megacities that can capture key features of all of these 

different attributes, we can better understand how megacities are similar or different.  
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B. THE FUTURE OPERATING ENVIRONMENT (FOE) 

The U.S. Marine Corps’ Futures Directorate conducted the 2015 Marine Corps 

Security Environment Forecast (MCSEF) in order to evaluate the potential operating 

areas and threats in the years 2030–2045 (United States Marine Corps, 2015). They 

sought to survey the critical trends and patterns that will shape the FOE and to provide 

institutional insights into the concepts and capabilities the Marine Corps must develop in 

order to prepare itself to face those future challenges. To analyze trends, MCSEF 

examines the changing global demographics, technology developments, competition for 

resources, stressors on the environment, globalization, governance, and the increasing 

influence of the urban littorals (United States Marine Corps, 2015). In broad terms, 

MCSEF discusses increasing movement toward urbanization and littoralization and their 

respective impacts on the key trends. For our purposes, we will utilize the definition of 

littoralization outlined in U.S. Marine Corps (2015): a geographic process by which 

populations and economic activities come together in the littoral environment. The 

MCSEF goes on to support the claims of Kilcullen (2013) and United States Army (2014) 

that Africa and Asia will continue to account for a large proportion of the additional 

urban growth. With the risks of extreme weather and natural disasters in these highly 

connected urban areas, the complexity of military operations increases, including 

humanitarian aid and disaster relief missions. Moreover, as a result of U.S. strategic 

initiatives to rebalance to the Pacific area of operations (AOR) where much of the growth 

is expected to occur, United States Marine Corps (2015) makes the case that we must be 

prepared for the full spectrum of military operations in these densely populated cities, 

including peacekeeping and major combat operations.  

The most significant contribution of this study to the problem of military 

operations in megacities is the Marine Corps’ examination of the capabilities and 

requirements that will continue to be developed in order to achieve our objectives in the 

FOE. The United States will continue to place greater emphasis on using unmanned and 

autonomous system technologies as well as precision guided munitions because of the 

increased risk associated with operating in an urban environment. Civilian casualties and 

collateral damage are far more likely in densely populated urban centers, and with the 
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widespread use of social media, any tactical mishaps that cause unintended consequences 

can have strategic level impact. This underscores the importance of deepening our 

understanding of the structure and interdependence of megacities, as well as why JWAC 

has a keen interest in the matter. 

Unfortunately, like much of the current work concerning megacities, United 

States Marine Corps (2015) does not provide quantitative data or analysis beyond broad 

global trends and patterns. While identifying these trends provides senior leaders with 

context, commanders need information specific to their regional areas of operations that 

will support decision making. Quantitative analysis helps to shape the operating picture 

for commanders by providing key insights and recommendations backed by data. We 

show that our quantitative analysis augments this work by providing insights into the 

structure and nature of various large urban areas. By creating megacity clusters and 

identifying the variables that draw cities close to one another, we can gain insight about 

those cities with less information. 

C. GROUPING SIMILAR MEGACITIES 

In one of the first attempts to apply academic rigor to studying megacities, the 

U.S. Army’s Strategic Studies Group (United States Army, 2014) conducted an analysis 

of megacity dynamics and challenges by applying qualitative methods to six different 

case studies including: Dhaka, Bangladesh; Lagos, Nigeria; New York City, New York; 

Bangkok, Thailand; Rio de Janeiro, Brazil; and São Paulo, Brazil. In the first four case 

studies, the researchers were able to conduct field work, whereas they only used a virtual 

case study method in Rio de Janeiro and São Paulo. Specifically, they utilize a systems-

theory approach to analyze the megacities holistically because of their core belief that the 

whole of the system must be appreciated in order to understand its various 

subcomponents.  

They follow this technique to establish two key systems and numerous 

characteristics associated with each system. The first system, “City Characteristics,” 

addresses the physical, economic, and social infrastructure of the cities to establish 

baseline context (United States Army, 2014). Then, the United States Army (2014) adds 
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second system, “Dynamics of Instability and Capacity,” which identifies the impact of 

evolving demographic features as well as internal and external threats on the resilience of 

the cities. For example, the combination of substantial urban migration and ethnic 

separation along with high levels of inequality may reduce the ability of a megacity to 

fight the destabilizing effects of hostile actors.  

As a result of their analysis, they produce three qualitative cluster groupings for 

the six megacities in their case study. The first cluster includes highly integrated cities 

with centralized and formal systems, high quality infrastructure, and regulated flow 

capacity (United States Army, 2014). The second cluster, moderately integrated cities, 

contain a mix of formal and informal systems, mixed quality infrastructure, and self-

regulated flow capacity (United States Army, 2014). Finally, loosely integrated cities are 

those which have decentralized and informal systems, poor quality infrastructure, and 

unregulated flow capacity (United States Army, 2014). As part of their findings, they 

conclude the cities from their case study can be grouped as shown in Table 1.  

Table 1.   Megacity Case Study Groupings. Adapted from United States Army 
(2014). 

Highly Integrated Moderately Integrated Loosely Integrated 
New York City, New York Bangkok, Thailand 

Rio de Janeiro, Brazil 
São Paulo, Brazil 

Lagos, Nigeria 
Dhaka, Bangladesh 

This table illustrates how the six cities studied in United States Army (2014) break into clusters 
based on the qualitative characteristics identified by the Strategic Studies Group.  

As might be expected, New York is a highly integrated, complex, and densely 

connected city. However, without a deep understanding of the other five cities studied, 

one might not expect the other cities to be grouped as they are in Table 1. Notably, one 

might expect Lagos to be a moderately integrated city and Bangkok to be a loosely 

integrated city. Additionally, the evidence United States Army (2014) provides for their 

decision in each case study demonstrates some academic rigor. They address key data 

points for some of the cities pertaining to population, gross domestic product (GDP) 

growth, and infrastructure such as the estimated number of buildings. They also 
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incorporate military assessments regarding the U.S. Army’s ability to adapt to such a city. 

Furthermore, their case study method provides greater depth than the broad discussion of 

megacities utilized in United States Marine Corps (2015).  

However, United States Army (2014) is limited in terms of quantitative depth. 

They do not clearly identify the actual infrastructure characteristics that led them to place 

the cities in specific categories such as the number of and flow rate through international 

airports, city access to mass transportation, amount of electricity production or number of 

power plants, among other aspects the would more clearly articulate what it means to 

have a highly integrated city. Furthermore, field work requires significant time and 

resources. In fact, the team was not expected to visit Mexico City, their seventh case 

study, until July of 2014, which was after the study publication date of June 2014. 

Clearly, efforts to expand the case study to incorporate each of the 36 current megacities 

in the world would prove burdensome. This is where our study adds value to the 

discussion regarding U.S. military’s understanding of megacities. We collect city level 

data pertaining to the four pillars (infrastructure, government, demography, and 

economy), and we apply quantitative analysis to support the work completed by the 

strategic studies group. 

Sapol (2016) provides a basis for analyzing megacities with quantitative 

techniques in order to influence how the U.S. military aligns forces. The current 

paradigm is tied to the six major regions aligned with geographic combatant commands 

(COCOM), but his study indicates the potential for shifting to a megacity focus in order 

to potentially reduce the number of political, military, economic, social, information, 

infrastructure, physical environment, and time (PMESII-PT) variables that must be 

evaluated. We recommend readers review United States Army (2013) for additional 

details regarding how the military develops PMSEII-PT information. One advantage of 

this approach is that combatant commanders can locate a megacity of interest in a cluster 

of similar, but potentially geographically disparate, cities, and seek recommendations 

from fellow commanders operating within those cities. Clustering thus induces combatant 

commanders to look outside their own AOR and instead to leaders operating in more 
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relevant environments, resulting in efficiencies in information sharing and strategic 

advantages in combat. 

In order to develop the clusters, Sapol (2016) collects the population density 

estimates and GDP per capita for each of the 36 megacities from the time of the study to 

serve as proxies for key features within a city. Sapol (2016) argues that GDP per capita is 

indicative of military spending, economic status, information systems, and infrastructure, 

whereas population density is indicative of infrastructure and the physical environment. 

By simplifying his analysis to these two high-level variables, he is able to easily collect, 

display, and explain the data to senior leaders. As a result, he produces six tiers of 

megacities such that cities in tier 1 possessed a high GDP per capita and low population 

density, and cities in tier 6 were characterized by low GDP per capita and high population 

density. Cities in the middle tiers are placed on a sliding scale between the tier 1 and tier 

6 result. The groupings for the six tiers can be seen in Figure 2.  

Figure 2.  Megacities from Sapol (2016) Clustered by GDP Per Capita and 
Population Density. 

 
As pictured, the cities with the highest per capita GDP and lowest population density 
make up the tier 1 cities. As the population density increases and per capital GDP 
decreases, the tiers transition until reaching the highest density and lowest per capita 
GDP cities in tier 6.  
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When we compare the results of this study to the results of the study conducted by 

the Army Strategic Studies Group (United States Army, 2014), we can see that some of 

their claims support each other. Colloquially termed “western” cities such as New York 

City fall into the highly integrated or tier 1 category, cities such as Rio de Janeiro or 

Bangkok fall into the middle tier in each study, and developing world cities such as 

Dhaka and Lagos fall into the or tier 5 and 6 categories. These results demonstrate the 

value of using quantitative data to conduct analysis in Sapol (2016). For less time and 

cost, he is able to produce results similar to those in United States Army (2014) while 

simultaneously increasing the scope of the work by incorporating all other megacities 

across the globe.  

While Sapol (2016) provides an initial analytical examination of the problem of 

grouping megacities, it does not provide depth and makes a critical assumption regarding 

its two variables. The Army Strategic Studies Group (United States Army, 2014) 

indicates that each megacity possesses its own characteristics and attributes. Hence, no 

two cities will exhibit exactly the same make-up across the four pillar. This makes 

reducing the many factors that make up those four major areas to GDP per capita and 

population density as outlined in Sapol (2016) unrealistic. Moreover, the six tiers based 

on these two variables do not provide military commanders with actionable information. 

For example, Chicago and Los Angeles would both be considered tier 1 cities using 

methods from Sapol (2016). However, they are quite different in terms of critical 

infrastructure and distribution of emergency services. Defined by their respective 

metropolitan statistical areas (MSA), Los Angeles has access to a major seaport for 

transporting goods into the country, but Chicago has a larger number of international and 

regional airports. Moreover, Chicago has a smaller population but consumes a larger 

amount of water per day and has a more robust public transportation system. Hence, a 

more robust solution might dictate that Los Angeles and Chicago are both tier 1 cities as 

outlined in Sapol (2016), but they split into separate sub-groups due to their differences 

in actual infrastructure, government, economic, and demographic attributes.  

Our work furthers the discussion on addressing the nature of various large urban 

areas by constructing a more comprehensive data set and applying sensitivity analysis to 
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determine where shifts in cluster membership may occur given data uncertainty. This 

same sort of sensitivity analysis can also be a tool used to make observations regarding 

how the cluster memberships change when new data is added. For example, a city like 

Lagos may group more closely with a different set of cities than in Sapol (2016) if they 

add more robust infrastructure, demographic features change with time, or more reliable 

data becomes available. 
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III. VARIABLE SELECTION AND DATA COLLECTION 

We construct the data set for this analysis using a combination of infrastructure, 

economic, government, and demographic information for 41 different large cities across 

the globe. Because there is no single database that addresses all of these categories for 

large urban areas, we need to accomplish two things before we built the data set. First, we 

need to identify which variables would provide enough information about a city to make 

an informed and reasonable assessment about its character. Second, we need to assess the 

feasibility of obtaining that information for cities in a list of candidate cities before 

beginning the search. In order to identify exactly which variables to incorporate, we 

begin with concepts identified in United States Army (2014), United States Marine Corps 

(2015), Sapol (2016), and Kilcullen (2012). Each of these documents include some 

insights into the type of information required for this type of study and allow us to 

capture this information into a set of 33 variables extracted from over 90 public sources. 

Specifically, we group information into our four pillars including infrastructure, 

government, economy, and demography. 

A. DATA SELECTION 

For infrastructure, we examine electricity generation/capacity, quantities of water 

sources by type (ground/rivers and reservoirs/desalination) and daily water distribution, 

the number of miles of road and rail within the cities, the number of regional and 

international airports, whether the city has a subway system as the rail system, whether 

the city contains a seaport as well as the flow through the seaport, the percent of the 

population with telephone access, the percent of the population with Internet access, and 

percent of the population with access to sanitation. For government services, we construct 

variables for whether the city is a state/provincial or national capital, hospitals, fire 

stations, police stations, and military presence. As indicators of economic health, we add 

the gross metropolitan product (GMP) or gross regional domestic product (GRDP), 

household income, the poverty rate, and education. Then, to evaluate the structure and 

composition of the population, we include the literacy rate, the percentage of young 
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people, the percentage of elderly people, the primary religion practiced by the population, 

number of people per household, and the population density. In the following sections, 

we detail the underlying justification for our variable selections as well as key variables 

we were unable to include but might improve future studies on the subject. A summary of 

our data collection process can be seen in Figure 3. 

Figure 3.  Data Collection and Validation Process. 

 

 

1. Infrastructure 

In order to sustain businesses, government activities, and residential environments 

electricity is essential to the industrialized world. As such, power grids are also at risk of 

attack during conflicts or disruption during natural disasters. Furthermore, in the current 

and future operating environment, these attacks and disruptions will often occur without 

kinetic military strike packages such as guided missiles and bombs but rather through 

non-kinetic attacks that shut all or portions of the network down. Specifically, Smith 

(2016) discusses the growing fears among government officials regarding cyber 

intrusions. As part of the report on Russian intrusions into the U.S. and Ukrainian power 

Variable 
Selection

•Identify the cities to be studied in the analysis
•Identify key variables to use via ongoing megacity research efforts
•Ensure data includes variables across all four megacity pillars including 
infrastructure, government, economy, and population demography 

Validation

•Validate that data exists for U.S. cities first as an availability test
•Collect the data for U.S. cities as baseline
•Any variable not found for all U.S. cities is infeasible or proprietary 
information, so we discard/replace with a proxy

Collection & 
Consolidation 

•Collect data for other megacities in the study and consolidate to one file
•Any data not found will be input as a missing value (N/A)
•Discard any variables with more than 50% N/A values to mitigate the amount 
of missing data and uncertainty 
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grids, former homeland security advisor, Frank Cilluffo, raises concerns about the 

implications of these actions on national security (Smith, 2016). In short, the ability of 

adversaries to conduct attacks on critical infrastructure without firing a shot or risking 

lives changes the operational picture dramatically. Airports, seaports, hospitals, 

manufacturing plants, and public transportation all rely upon access to electrical power 

which suggests that major disruptions can have far-reaching impacts. The Industrial 

Control Systems Cyber Emergency Response Team (ICS-CERT) from the United States 

Department of Homeland Security (DHS) also addresses some of this impact in a report 

regarding other suspected Russian power grid attacks against Ukrainian infrastructure in 

December of 2015. Specifically, ICS-CERT (2016) reports that the attack resulted in loss 

of power to 225,000 customers, while striking multiple facilities in the area. And, a 

British Broadcasting Corporation (BBC) News report identifies that another power 

outage in 2016 resulted in the loss of power to approximately one fifth of the total power 

consumption in Kiev, likely due to a cyber-attack (BBC, 2017). These outages indicate a 

growing capability and significant risk for densely populated urban areas like megacities. 

As a result, we initially sought to include the number of power plants in a city by type of 

power source as well as the total generating/capacity in megawatts (MW). However, 

detailed data pertaining to the number of power plants by power source in the 

international cities proved to be unavailable, so we only include the total installed 

capacity/generation in this study.  

In addition to power, water represents another critical utility that influences life in 

a megacity. Rivers and dams provide hydroelectric power, as well as sources for drinking 

water and sanitation. Tortajada et al. (2006) present some of the key challenges that large 

urban areas face with regard to water sources, supply, demand, and distribution. Many 

developing megacities such as São Paulo, Mexico City, Dhaka, and Al-Riyadh face 

challenges producing enough water to distribute through their water network due to 

inefficiencies and poor infrastructure. They further assess that this often results in the 

supply not being able to meet water demand. In addition to the risk of kinetic military 

strikes and non-kinetic attacks like cyber intrusions, many megacities risk disruption and 

contamination to their water supply during natural disasters. As outlined by Moroney et 
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al. (2013), the Department of Defense (DOD) plays a significant role in the humanitarian 

assistance and disaster relief (HA/DR) mission due to our budgetary resources, robust 

logistical capabilities, and consistently forward deployed status. Moroney et al. (2013) go 

on to outline several HA/DR missions where the U.S. military provides various types of 

support, including water and sanitation provisions. Hence, it is important for us to capture 

indicators of cities’ current water infrastructure because we expect that cities with less 

robust infrastructure and poor ability to meet water demand face greater risks in the event 

of disasters such as Hurricane Sandy in Haiti or typhoons in the Philippines, in addition 

to military strike outages. We had difficulty accumulating detailed information regarding 

the number of water treatment facilities and output efficiency. This led us to use the 

number of water sources by type including rivers/lakes/reservoirs, ground water, and 

water desalination, as well as the daily water supply to the city in millions of gallons as 

proxy variables. We expect that the water source information is indicative of the 

infrastructure and susceptibility to contamination, and the daily supply indicates a 

capacity and flow to the population. 

Kilcullen (2013), provides a clear example of the ways terrorists can exploit 

access to seaports and the broader water network while improving their ability to hide 

amongst the populace in a dense city like Mumbai, one of the 41 megacities identified in 

our study. Specifically, he discusses a ten-man of Pakistanis from the terrorist 

organization, Lashkar-e-Taiba, using a ship sailing from the Karachi’s harbor to the Port 

of Mumbai in order to land and hide amongst the populace before conducting an attack 

(Kilcullen, 2013). This underscores one important aspect of incorporating whether a city 

has a seaport, but there are also others. In addition, we know that navies require access to 

seaports to conduct re-supply. And, a seaport is also an indicator of the city’s economy. 

As reported by the United Nations’ (UN) International Maritime Organization (IMO), 

90% of global trade volume moves by sea which suggests that any impacts to the flow of 

goods or services in or out of a seaport will have rippling effects on the economy (United 

Nations, IMO, 2017). From a doctrinal perspective, this helps to explain the importance 

of a naval blockade as a tactic for influencing adversaries. As a result, in addition to 

capturing whether a city has a seaport, we also found it beneficial to capture economic 
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flow through the seaport as an indicator of economic value. We accomplished this by 

adding the annual number of twenty-foot equivalent units (TEUs) and total throughput in 

millions of metric tons. This allows us to identify availability as well as flow in order to 

make considerations for the impact of disruption through disasters or strikes. 

In addition to transportation by sea, airports represent a growing part of the 

transportation of goods and services as well as people. In the event of conflicts, airfields 

can be utilized to transport military supplies or struck as targets. At the turn of the 

century (2000), the World Bank reports that approximately 118,257 million ton-km of 

freight moved across the globe via air. And, by 2015, the World Bank reports this number 

reached 188,000 million ton-km which represents a 59% increase over that period (World 

Bank, 2017a). More impressively, the number of passengers transported more than 

doubled, increasing from 1.67 billion to 3.44 billion in the same period (World Bank, 

2017b). This illustrates the increasing importance of airports and aircraft to the overall 

infrastructure of cities. As a result, we sought to capture an indicator for the amount of 

aircraft-capable infrastructure present in each city. To accomplish this differentiation, we 

separate airports by whether they are local or international hubs. This led us to include 

the number of regional airports and the number of international airports in each city. 

While we were not able to include an indicator for flow at the individual city level, total 

passengers and freight transported via air may provide interesting insights into capacity 

for each of these large urban areas.  

Obviously, ground transportation networks also play a pivotal role in 

characterizing the infrastructure of a megacity. The military implications of ground 

transportation networks are significant and highlight many ongoing challenges in large 

urban areas. In terms of road networks, the local populace is a concern due to the 

significant increase in the number of cars on roads that has occurred in the 20th and 21st 

centuries. Additionally, highways provide another means of moving military supplies and 

equipment as well as freight away from ports. For example, the Port of New York-New 

Jersey’s website provides estimated transit times to get good transport inland from 

international locations such as Mumbai, Singapore, and Rotterdam through the available 

road networks. Kilcullen (2013) also addresses the issue of road networks in an example 
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about the Mungiki gang in Nairobi, Kenya, using food transportation routes to extort 

money from the operators. Even in cities with robust mass transit systems like New York 

City, traffic congestion remains a significant challenge and would be further disrupted in 

the event of disasters or military operations.  

In one of the earliest research efforts regarding the military implications of ground 

networks, Harris and Ross (1955) studied the optimal ways of blocking supplies moving 

along the Soviet Union’s rail network to Europe in a limited number of attacks. 

Additionally, most militaries possess heavy equipment such as tanks that are difficult to 

transport via trucks due to a limited number of heavy equipment transports (HET) and are 

often transported via rail on the ground, which further supports the strategic importance 

of understanding the rail network associated with a megacity. And, we also recognize that 

subway systems are increasing in popularity due to their lower impact of surface 

infrastructure and ability to move people through an urban environment efficiently. As a 

result, we find it important to provide an indication of that level of infrastructure, 

particularly given subway systems are less common in developing world cities. The 

presence of a subway may be indicating something about the development of the city as 

well as their economy due to the significant investment costs associated with the 

development of a subway. For example, Singapore has produced one of the most 

advanced subway systems in the world for a total cost of approximately $5 billion, which 

provided approximately 22 miles of track and 28 different stations (Lepeska, 2011). As a 

result, we include the number of miles of road, the number of miles of rail, and a binary 

indicator for whether the city has a subway system. These parameters serve as proxies for 

our original intent to identify the number of transportation choke-points for each city, 

which would have indicated the capacity of the network to flow goods and people in and 

out of the city during disruptions. 

Telecommunications networks and Internet access both contribute measurably to 

the infrastructure of a city while simultaneously influencing security. United States 

Marine Corps (2015) argues the ubiquity of telecommunications is decentralizing 

military, economic, political, and social power to the individual level, allowing small 

groups to harness mass communications to challenge the authority of the state. We can 
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look to countries like Afghanistan as examples of this trend. In these developing 

countries, mobile telephone networks enable locals to communicate and conduct business 

while aiding nefarious organizations like the Taliban and Al Qaeda to coordinate efforts 

and execute information operations (IO) campaigns against their adversaries (the 

government and outside actors). United States Army (2014) provides another example of 

this reality when discussing the ability of gangs using mobile phones in São Paulo to 

manage illicit drug networks in prisons and informal communities known as favelas. 

From a combating terrorism perspective, we have also seen the rise of the Islamic State of 

Iraq and Syria (ISIS) expand the presence of terrorist activities in the online domain. 

They have utilized the Internet through YouTube, Twitter, and other social media outlets 

to conduct recruiting, messaging, and publicizing their attacks, which U.S. forces must be 

prepared to combat in the FOE. Thus, we find it critical to incorporate indicators for the 

availability of and access to telecommunications and Internet networks. Unfortunately, 

data pertaining to hard infrastructure was unobtainable, so we include the percent of the 

population with access to telecommunications (mobile or landline) and the percent of the 

population with access to the Internet as proxy variables for capacity and network 

infrastructure.  

2. Government Services

Government infrastructure plays a role at all levels of a society, to include the city 

level. In particular, cities that serve as capitals contain additional civil servants and 

government buildings to facilitate government operations. For example, in a democracy 

or republic, we can reasonably expect there to be buildings for the parliament or 

congress, the courts, the president or prime minister, and all federal agencies at the 

national level. Moreover, even in an absolute monarchy such as Saudi Arabia, ministries 

and departments exist that require facilities in addition to a large palace for the king and 

his family. And, at the state level the same types of government infrastructure are 

required to support a governor and their staff. Unfortunately, we do not have a sufficient 

proxy variable to address the details of the infrastructure quality or mass relative to the 

rest of the city, but we add binary variables for whether the cities are capitals in order to 

account for the reality that we know some additional infrastructure exists for these cities. 
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The government sector also provides services to the people in their municipalities 

such as fire fighters, police, military, and some public hospitals. By accounting for the 

availability of these resources, we improve our ability to understand potential shortfalls 

during military operations in megacities, HA/DR missions in particular. Felix and Wong 

(2015) show that availability and response time of emergency services can have far 

reaching impacts on megacities. For example, the emergency services available in New 

York City during 9/11 were able to respond quickly and efficiently because they had 

robust infrastructure and personnel to support the effort. Hospitals had the ability to treat 

injuries, the fire fighter network effectively controlled the spread of fires and provided 

support to evacuation, and the police aided in cordoning the area, providing security, and 

facilitating evacuation (Felix and Wong, 2015). Simultaneously, these services also 

illuminate the importance of alternative support access. In the case of Hurricane Katrina, 

the U.S. military provided medical care as well as evacuation support for thousands of 

people according to Wombell (2009), which shows the additional capability provided by 

having military support readily available. As a result, we elect to include the number of 

fire stations, police stations, hospitals, and military bases in the local area as proxies for 

coverage because we expect that cities with more emergency services available will be 

more resilient to disruptions than those with less. We recognize this does not indicate the 

ability of emergency services to operate under their own power in the event of outages, 

but this provides a building block for future research.  

While we were not able to include controls for levels of corruption or government 

systems strength, we recognize that these are important features of the government pillar 

and recommend them as data additions in future work. Kilcullen (2013) and United States 

Army (2014) discuss this reality exists for many megacities in the developing world, to 

include São Paulo. They make the case that corruption and organized crime both have 

significant influence over cities in the developing world and may undermine access to 

emergency services despite a large amount being located with the metropolitan area. 

Researchers can also look to examine relative crimes rates, fire responses, and hospital 

beds per 1000 people because of their ability to examine effectiveness and capacity of 
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emergency services in addition to availability. This data is difficult to find and 

consolidate for cities, which impeded our ability to include that information in this study.  

3. Economic Health

Sapol (2016) gave economic power for megacities an explicit role in his analysis 

by incorporating GDP per capita and assuming it indicates other aspects of city 

information as we addressed in Chapter II. Because we explicitly control for factors such 

as infrastructure and information systems, we view GDP as a primarily an indicator of the 

economic health of the city. For example, Dobbs et al. (2011) make the claim that 600 

cities accounted for 60% of global GDP in 2011. This suggests that much of the 

economic power of the globe resides in large urban areas which makes sense, but they do 

not illuminate what that distribution looks like among those 600 cities. On the extreme 

end, New York City’s GDP was approximately $1.13 trillion in 2014 which made it rank 

13th in the world among countries according to United States Army (2014). As a result, 

we make the assumption that the largest cities tend to contribute the most to overall GDP 

and include it as a parameter for each city in billions of U.S. dollars. To account for the 

average economic power of the family level, we consider the average household income. 

We include the individual wealth because we expect some cities in the developing world 

to have relatively high city level GDP but still low average household incomes, whereas 

cities like New York City and London both have large GDPs and high average household 

incomes. To capture this trend, we include average income as a variable in dollars.  

Another indicator of economic health is the number of people living in poverty 

relative to the entire population, which may be driving down the average household 

income. From an economic perspective, obviously we expect cities with a lower 

incidence of poverty to have healthier economies. Kilcullen (2013) and United States 

Army (2014) often reference the risks that income inequality and high poverty rates pose 

to security in large urban areas. They argue that highly impoverished slums tend to be 

breeding grounds for high crime, which has important implications for potential military 

operations in a megacity. Thus, we incorporate each city’s poverty rate as an indicator of 

this reality. In identifying this as a parameter, we also note that poverty is relative to 
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individual national standards and income. Hence, the poverty rates identified in our study 

are relative to the country in which the cities reside. 

The economic health of a city also depends upon the education of the population. 

In general, different jobs require different skill sets, and a highly industrialized economy 

requires more highly educated people in order to conduct daily business. Hanushek and 

Woessmann (2010) discuss the importance of a highly educated workforce at the country 

level, arguing that improving education can have far reaching impacts on the overall 

growth of an economy. While our study focuses on the city level vice the country level, 

many of the same concepts still apply. Automation is a growing part of the industrialized 

global economy, which suggests that laborers require additional technical and 

comprehension skills in order to work with the new technologies. United States Marine 

Corps (2015) agrees that technological advancements will continue to drive economies 

into the future, which supports the claims that producing an educated workforce adds to 

both security and prosperity. Because we are not able to obtain the data associated with 

education quality at the city level outlined in Hanushek and Woessmann (2010), we 

control for the education of the populace by including the percentage of the population 

who completed secondary school or high school as well as the percentage of the 

population who completed a bachelor’s degree or equivalent and higher. Future work can 

also look to compiling education infrastructure information for each city as a signal for 

education. This might include the number of high schools, universities, and/or libraries in 

each city. Simultaneously, this may also provide better insight into the common hard 

infrastructure in each city.  

While some may argue that literacy rates provide a similar signal to that provided 

by education, we refer back to the Hansushek and Woessmann (2010) argument that 

quality of education is more important to addressing economic development than simply 

level of education achieved. Specifically, they show evidence that even countries 

improving in educational level output are still below average in literacy, which suggests 

that education level does not always perfectly align with performance. Because of this 

tension between performance and education level, we include literacy rates for cities as a 

proxy variable for the quality of education.  
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4. Population Demography

The most common demographic feature among megacities discussed in the 

literature is population density. Sapol (2016), United States Army (2014), and Kilcullen 

(2013) all discuss the challenges that densely populated areas pose. Kilcullen (2013) 

discusses this in the context of allowing non-state actors to hide among the populace, and 

United States Army (2014) considers density a factor that contributes to environmental 

vulnerability and resource competition. Finally, because Sapol (2016) also incorporates 

population density directly into his clustering model, we believe these ideas guide our 

understanding of the military implications of operating in a more densely populated city 

vice a less densely populated city. Strikes risk more civilian casualties, natural disasters 

impact a larger portion of the population in a smaller area, and non-state actors have 

improved freedom of movement, particularly when they have influence over locals as 

discussed in Kilcullen (2013). Therefore, we include population density for each city in 

the form of people per square mile. 

The structure and composition of a population are inherently related to 

infrastructure, the economy, and government services. As identified in United States 

Marine Corps (2015), the size of the working age population has ramifications for 

military, economic, political, and social power because they encompass the military-age 

population, academics and innovators, and the general workforce. Furthermore, in most 

regions of the world, this age group makes up the vast majority of the populace. 

However, there is also an interesting relationship between the number of young people in 

a population and the number of elderly people in a population depending on whether they 

come from a highly developed part of the world or developing part of the world. In 

general, populations in highly developed parts of the world have higher life expectancies 

and a larger percentage of older people, whereas populations in the developing world 

tend to have a larger percentage of young people.  

Nikolova (2016) and Patna (2013) both address aging populations and changing 

demographics and the impacts of those changes on the broader society. Moreover, the 

Central Intelligence Agency (CIA) Factbook shows that countries like Afghanistan, 

Nigeria, and The Democratic Republic of Congo have a median age of approximately 18 
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years old, whereas countries like the U.S. and U.K. have median ages closer to around 40 

(Central Intelligence Agency, 2017). Considering these dynamics, we sought to include 

indicators for the age demography by identifying the percentage of people 18–19 years 

old and younger as well as the percentage of the city population ages 65 and older.  

We also expect family size varies by region due to differences in cultural norms 

and expectations. Developed countries tend to have smaller household sizes, and the 

developing world tends to have larger household sizes. According to a report published 

by Nakono, an industry research company, we can see that this is accurate on the country 

level. Saudi Arabia, Philippines, and Egypt, had estimated household sizes of 5.79, 4.5, 

and 4.35 in 2012, respectively. However, the China, the U.S., and U.K. had relatively 

smaller household sizes of 3.03, 2.63, and 2.39 in 2012, respectively (TekCarta, 2017). 

Countries like Afghanistan serve as a future example of this because of family structure 

and responsibilities. Often, multiple generations will live within the same household in 

order to gain wealth and spread the work-load associated with family chores. We expect 

that a similar dynamic may exist at the city level, so we include average household size in 

our study. 

From a cultural perspective, religious affiliation, or lack thereof, play a role in the 

way people interact with the world around them. While the United States has a mix of 

religious affiliations, Christianity and its values permeate through American culture even 

though it is a society with the separation of church and state. According to a Pew 

Research Center survey, they estimate that approximately 70.6% U.S. citizens describe 

themselves as Christians. And moreover, only 5.9% of the remaining population affiliates 

with a specific non-Christian religion such as Judaism or Islam (Pew Research Center, 

2017). In the United Kingdom, Christianity proved to be less dominate with 59% of the 

population affiliating with Christianity, and approximately 25% being unaffiliated 

(United Kingdom, 2011). In contrast, many countries in the Southwest Asia and Africa 

affiliate mostly with Islam and simultaneously combine church and state to make Islam 

the official religion of the country, while Hinduism dominates in India. These dynamics 

are important to capture in identifying the nature of a city because of the impacts on 

society and infrastructure. Additionally, from a military perspective, religious structures 
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are generally protected against military strikes. We observed this frequently during the 

conduct of counter-insurgency (COIN) operations in Iraq where terrorists willingly 

placed innocent civilians in harm’s way in order to avoid confronting U.S. forces. As a 

result, it is important to have an understanding of the types of structures we can expect to 

be most common in a given area, whether they are churches, mosques, or temples.  

B. DATA COLLECTION AND VALIDATION 

After identifying all of our variables, we collect the data for the U.S. cities in our 

data set first in order to establish a baseline for the other cities. We assume that any data 

we are unable to find for U.S. cities would likely be unavailable for foreign cities, so we 

drop those variables. We also include eight of the top 10 largest cities in the U.S. by 

population although they are not all megacities. These are New York City, Los Angeles, 

Chicago, Dallas-Fort Worth, Washington, D.C., San Francisco, Philadelphia, and Boston. 

We define city borders based on their respective metropolitan statistical areas (MSA) as 

defined by the Census Bureau because the megacity construct examines the broader 

metropolitan area rather than the strict city limits. We do this for two reasons: (1) it 

increases the number of cities in the collection, and (2) it allows for the possibility that 

large cities in the developing world may be more similar in their infrastructure and 

economic power to large (but not mega) cities in the U.S. This might, for example, result 

in clusters that include a large developing world city like Jakarta or Mexico City and a 

much smaller city in the U.S. like Boston or San Francisco. Once we obtain the necessary 

data for the cities in the U.S., we search for data regarding the other 33 cities of our 

study. We select cities from each combatant command that are reasonably large, come 

from a diverse set of countries, and have some level of strategic importance. For 

example, Baghdad has strategic relevance due to the fight against ISIS, and Kabul 

remains an important part of U.S. foreign policy in 2017. Table 2 lists all the selected 

cities and their population sizes according the Demographia Largest Urban Areas 

population estimate for 2015 (Demographia, 2016). 
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Table 2.   List of Selected Cities. Adapted from Demographia (2016). 

Table 2 contains each city, as defined by their metropolitan area, used to conduct this study as 
well as the COCOM responsible for operations in that area, their world population rank, and 
estimated population as of 2015. Recall, cities with a population greater than 10 million are 
considered “megacities.” 

COMBATANT 
COMMAND

Rank By 
Population

Geography Urban Area
Population 

Estimate

PACOM 2 Indonesia Jakarta 31,320,000
PACOM 3 India Delhi, DL-UP-HR 25,735,000
PACOM 5 Philippines Manila 22,930,000
PACOM 6 India Mumbai, MH 22,885,000
CENTCOM 7 Pakistan Karachi 22,825,000
PACOM 8 China Shanghai,SHG-JS-ZJ 22,685,000
NORTHCOM 9 United States New York, NY-NJ-CT 20,685,000
SOUTHCOM 10 Brazil São Paulo 20,605,000
PACOM 11 China Beijing,BJ-HEB 20,390,000
NORTHCOM 12 Mexico Mexico City 20,230,000
EUCOM 15 Russia Moscow 16,570,000
PACOM 16 Bangladesh Dhaka 16,235,000
CENTCOM 17 Egypt Cairo 15,910,000
PACOM 18 Thailand Bangkok 15,315,000
NORTHCOM 19 United States Los Angeles, CA 15,135,000
PACOM 20 India Kolkata, WB 14,810,000
SOUTHCOM 21 Argentina Buenos Aires 14,280,000
CENTCOM 22 Iran Tehran 13,670,000
EUCOM 23 Turkey Istanbul 13,520,000
AFRICOM 24 Nigeria Lagos 12,830,000
SOUTHCOM 26 Brazil Rio de Janeiro 11,815,000
AFRICOM 27 Congo (Dem. Rep.) Kinshasa 11,380,000
PACOM 28 China Tianjin,TJ 11,260,000
SOUTHCOM 29 Peru Lima 10,950,000
EUCOM 33 United Kingdom London 10,350,000
PACOM 34 India Bangalore, KA 10,165,000
PACOM 35 Viet Nam Ho Chi Minh City 10,075,000
NORTHCOM 39 United States Chicago, IL-IN-WI 9,185,000
AFRICOM 40 South Africa Johannesburg-East Rand 8,655,000
PACOM 43 India Hyderabad, TL 7,750,000
PACOM 47 China Chongqing,CQ 7,440,000
CENTCOM 54 Iraq Baghdad 6,790,000
NORTHCOM 56 Canada Toronto, ON 6,550,000
NORTHCOM 58 United States Dallas-Fort Worth, TX 6,280,000
NORTHCOM 65 United States San Francisco-San Jose, CA 5,955,000
CENTCOM 66 Saudi Arabia Riyadh 5,845,000
NORTHCOM 73 United States Philadelphia, PA-NJ-DE-MD 5,595,000
NORTHCOM 80 United States Washington, DC-VA-MD 4,950,000
AFRICOM 81 Kenya Nairobi 4,930,000
NORTHCOM 91 United States Boston, MA-NH-RI 4,490,000
CENTCOM 121 Afghanistan Kabul 3,650,000
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C. DATA SUMMARY 

The data set for this study incorporates a total of 33 variables for each of the 41 

cities. Appendix A gives the summary statistics for these variables, including the mean, 

standard deviation and percentage of the values missing for each variable. We use this 

section to address particular items of note pertaining to the data set. First, we define our 

variable set. We use Table 3 and Table 4 to delineate each variable by name and type. 

The first column in Tables 3 and 4 indicates the variable. This name matches the name of 

the variable in the summary statistics from Appendix A. The second column of the tables 

shows the variable name as it’s reflected in our actual data set. In the third column, we 

identify whether each variable is numeric (continuous), integer, binary {0, 1}, or 

categorical. And, we provide a brief description of each variable in the fourth column.  

The degree to which we have missing data is an important component of our 

study and varies by variable from 0% to approximately 30%. However, by city, the 

percentage varies from 0% to only approximately 25%. This suggests that the cities tend 

to have values for the majority of variables, but we also have particular variables that are 

missing for several cities from our sample. As shown in Appendix A, education has the 

most missing values, followed by poverty rate. The percentage of the population with a 

bachelor’s degree or higher (Bachelor’s Degree [%]) is missing approximately 32% of its 

values, and a high school diploma or higher (High School Diploma [%]) is missing 

approximately 27% of its values. Poverty rate contains slight fewer missing values with a 

total of 20% of its values missing.  

We briefly describe the variability in data missing by city and direct the reader to 

Appendix A for a complete description of missing data. In total, our data set contains 104 

missing values, which amounts to approximately 7.6% of the values in the data set. This 

missing data is concentrated in foreign cities but varies widely in terms of which missing 

values correspond to a particular city, with the exception of China and India. Within both 

countries, the data available was consistent internally, which we attribute to the data 

coming from the same sources. For example, the Chinese and Indian cities have data for 

between 85–88% of the variables, compared to 98–100% for the U.S. cities. In contrast, 

cities in Africa, the remainder of Asia, and South America do not exhibit consistency in 
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terms of data availability. Notably, the rest of the developing world has data for between 

75–94% of the variables, thereby showing much greater variability in available data.  

Table 3.   Description of Variables Used to Conduct Clustering Analysis (Pt. 1). 

Variable Variable Name 
Variable 

Type 
Description 

Electricity Generation (MW) MegaWatts Numeric 
Total electricity installed 
capacity in megawatts (MW) 

Ground Water Sources GroundWater Integer 
Number of ground water 
aquifers 

Reservoir/River/Lake 
Sources Reservoirs.Rivers Integer 

Total number of lakes, rivers, 
and reservoirs feeding water 
delivery 

Desalination Plants Desalination Integer Number of desalination plants 

Daily Water Dist. (million 
gal.) WaterDist Numeric 

Daily amount of water 
distributed to the municipality in 
hundred millions of gallons 

Int’l Airports Intl.Airports Integer 
Number of international airports 
in the metropolitan area 

Regional Airports Reg.Airports Integer 
Number of regional airports in 
the metropolitan area 

Seaport Seaport Binary Whether the city has a seaport 

Seaport (million TEUs) TEUs Numeric 

Annual throughput in millions 
of twenty-foot container 
equivalent units (TEU) 

Seaport (million tons) Tons Numeric 
Annual throughput in millions 
of metric tons 

Road Network (miles) Road.Network Numeric 
Number of miles of road 
network 

Rail Network (miles) Rail.Network Numeric Number of miles rail network 

Telecomm Access (%) Telecomm.Access Numeric 

Percentage population with 
telecommunications access 
(mobile or landline) 

Subway Subway Binary Whether the city has a subway 

Sanitation Access (%) Sanitation Numeric 
Percentage of population with 
access to improved sanitation 

Hospitals Hospitals Integer 
Number of hospitals in 
metropolitan area 

Police Stations Police Integer 
Number of police stations in 
metropolitan area 
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Table 4.   Description of Variables Used to Conduct Clustering Analysis (Pt. 2). 

Variable Variable Name 
Variable 

Type 
Description 

Fire Stations Fire Integer 
Number of fire stations in the 
metropolitan area 

Military Bases Military Integer 
Number of military bases in 
metropolitan area 

State Capital State.Capital Binary 
Whether the city is a state/
provincial capital 

National Capital Natl.Capital Binary 
Whether the city is a national 
capital 

GDP (billion USD) GDP Numeric Annual GDP  

High School Diploma (%) High.School Numeric 

Percentage of population with a 
high school diploma or 
equivalent 

Bachelor’s Degree (%) Bachelors Numeric 
Percentage of population with a 
bachelor’s degree 

Literacy Rate (%) Literacy.Rate Numeric 

Percentage of population 
deemed literate by local 
standards 

Average Income Avg.Income Numeric 
Average annual household 
income in U.S. dollars 

Poverty Rate (%) Poverty.Rate Numeric 
Percentage of population living 
below the local poverty line  

Average Household Size Household.Size Numeric 
Average number of people 
living in each household 

Pop Under 18–19 Yrs Old 
(%) Under.18 Numeric 

Percentage of population under 
18 years old or 19 years old, 
whichever is available 

Pop Over 65 Yrs Old (%) Over.65 Numeric 
Percentage of population 65 
years old and older 

Internet Access (%) Internet.Access Numeric 

Percentage of population with 
Internet access in the 
metropolitan area 

Religion Primary.Religion Categorical

Religious affiliation of the 
largest percentage of the 
population. This variable has six 
levels. Christian, Islam, Chinese 
religion or atheist, Hinduism, 
Buddhism, and Vietnamese 
Religion or atheist 

Pop Density (Per sq. mile) Pop.Density Numeric 
Number of people per square 
mile in the metropolitan area. 
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Across the full set of variables, we also notice that variables are measured on very 

different scales and some exhibit quite a bit of variability (see Appendix A for standard 

deviations by variable). In Figure 4, we show side-by-side comparisons of the boxplots 

for each of the 32 numeric, integer, and binary variables in our data. We standardize each 

variable to a mean equal to zero and a standard deviation equal to one so that they are on 

the same scale.  

Figure 4.  Comparison of Boxplots for Each Variable in Study, Standardized to a 
Mean=0 and Standard Deviation = 1.  

Figure 4 shows the distribution of each numeric (continuous), integer, and binary {0, 1} 
variable in our data set. Each variable is standardized to a mean of zero and standard 
deviation of one. Clearly, the majority of the data is right skewed with large outliers. 
However, we also see that literacy rate and telecommunications access are left skewed 
with small outliers. Sources used for compilation can be found in Appendix C, and 
plotted using methods from Wickham (2009). 

We can see that the majority of the variables shown in Figure 4 are right skewed. 

In particular, we note some of the variables that have extremely large outliers with a large 

separation from the next largest value. New York City is an extreme outlier in the number 

of fire stations (673) supporting its MSA, the Washington, DC, MSA is a large outlier in 

ground water sources (33), Chongqing is the largest outlier in number of hospitals (1502) 

and length of their road network (87,364 miles), Johannesburg has the most rivers and 
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reservoirs (87) that feed its water distribution system, and Shanghai has the largest 

tonnage of annual throughput (498 million tons) at its seaport. Each of these values are 

over two standard deviations away from the next largest value. In contrast, we also see 

that the data have some variables whose distributions are left skewed. Dhaka has the 

lowest literacy rate (43.6%), and Chongqing has the lowest access to telecommunications 

(14.1%). But, these outliers are within one standard deviation of the nearest values, 

Chicago and Kabul, respectively. The shapes of variable distributions and the extreme 

outliers impact the techniques we can apply to impute missing data and cluster our cities.  

In addition to the summary information in Section C, we also include our data 

sources and specific calculation methods for certain proxy variables in Appendix B and 

Appendix C. Specifically, we dedicate Appendix B to addressing how we approximate 

variables where data is available but not in the form we seek. This includes accounting 

for values for variables that are only available at that state or provincial level, or variables 

that do not directly measure a particular feature we seek to analyze but serve as viable 

proxies. For example, in some cities installed electricity capacity is not always available, 

so we outline how we incorporate proxies such as electricity consumption or electricity 

generation. In Appendix C, we identify, by country, the sources for each of the 33 

variables in our study. 
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IV. METHODOLOGY 

In this chapter, we detail the methods used to form the clusters, how we handle 

the missing values in the data, and the techniques required to produce an ensemble of 

clusters and “average” clustering, based on the randomized missing data imputations. 

A. DISTANCE CALCULATION 

Prior to producing data clusters using current techniques, we first identify the 

method we will use for calculating the distances between observations. Several methods 

are available that produce generally good results, but the particular method to use often 

depends on the nature of the data. Our data contains three features that limit our options. 

Specifically, the numeric variables are measured on very different scales which can skew 

results if they are not handled properly. Additionally, approximately 8% of our data are 

missing. Although we intend to impute the missing values, we also want a distance 

measure that can handle missing values for our initial exploration and determining the 

appropriate number of clusters. Finally, our data also contains a categorical variable with 

six levels. This challenge could be mitigated by using six different binary variables to 

account for each level, but we seek a distance measure that automatically accommodates 

categorical as well as numeric variables without requiring extra data manipulation.  

Euclidean and Manhattan distances are common choices, but they are limited to 

handling numeric variables and do not perform as well when the data contain outliers, 

like ours. We elect to use Gower’s (1971) method to calculate our distances because it is 

capable of handling missing values, mixed-type quantitative variables, and categorical 

variables and internally standardizes data. If we have a n x p matrix of data where n is the 

number of observations and p  is the number of variables, Gower’s coefficient uses the 

absolute difference between two observations i, j, on a variable k, divided by the range of 

the kth variable. This computes the coefficient for quantitative variables (Gower, 1971). In 

the case of categorical variables, Gower (1971) computes differences by assigning a 1 if 

observation i and j match for a given variable and 0 if they do not. These calculations also 

manage missing values. In general, Gower (1971) ensures that missing values are not 
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directly included in computing the distance between observations i and j by assigning a 

weight of 1 if the variable is present in both observations and 0 if one or both are missing. 

Finally, he calculates the total distance coefficient using the average distance coefficient 

between observations across all variables. We do not show the mathematical equations 

that produce the Gower’s distance in detail, so we recommend readers see Gower (1971) 

for further explanation.  

We believe Gower’s method provides us with a reasonable technique for 

calculating the differences among our megacities. In order to implement the calculations 

for Gower’s distances, we use the DAISY function from the cluster package (Maechler, 

et al., 2016) in the R programming language (R Development Core Team, 2008). DAISY 

provides the capability to implement three major distance calculations including 

Euclidean, Manhattan, and Gower distances by taking the data set as an input and 

producing an output of the resulting m x n matrix of all pairs of inter-point distances. We 

can then use this output as input for our clustering algorithms.  

B. CLUSTERING ALGORITHM  

We rely on a simple partitioning method to cluster the 41 megacities into distinct 

group. We will not address all possible partitioning methods, but we mention the most 

common of these techniques including PAM, Clustering Large Applications (CLARA), 

and K-Means. The K-Means algorithm uses Euclidean distances between observations 

and produces clusters based on each observation’s nearest neighbors such that the within 

cluster distance is minimized (MacQueen, 1967). While similar to K-Means, PAM and 

CLARA seek to identify central observations called “medoids” that serve as 

representative observations for a cluster (Kaufman & Rousseuw, 1990). PAM and 

CLARA then pair each observation to its nearest medoid in order to produce the clusters 

(Kaufman & Rousseuw, 1990). We differentiate PAM and CLARA by noting that 

CLARA is for use in large datasets and uses sampling techniques to identify medoids 

rather than the full set of observations, as used in PAM. For the purposes of our study, we 

elect to use the PAM algorithm from Kaufman and Rousseuw (1990). Among its 

desirable traits, PAM allows distances between observations to be defined by the user 
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whereas K-Means requires all variables to be numeric and distances Euclidean. Thus, 

PAM, allows for data with categorical variables. 

C. NUMBER OF CLUSTERS 

To use the PAM algorithm, we must first identify the number of clusters to use. 

An initial perusal of the work done in United States Army (2014) and Sapol (2016) 

would lead us to select three clusters or six clusters, respectively, as our baseline. 

However, this assumes that the number of categories in those studies were the best 

possible options. To choose the appropriate number of clusters, we use an internal 

validation measure known as the silhouette width, which is calculated for individual 

observations and then averaged over individuals for each cluster as well as the whole data 

set. For the mathematical definition of silhouette width, see Kaufman and Rousseuw 

(1990). On the individual observation level, it identifies how distinct a given observation 

is from its nearest neighboring cluster relative to its actual cluster. When averaged, it 

represents a signal of how distinct each cluster is from other clusters and the degree to 

which the data has an underlying clustering structure. Silhouette width ranges from -1 to 

1 where values closer to 1 represent the most distinct clustering.  

To be clear, let us first define two separate clusters as C  or D . When the 

silhouette of an observation i  from cluster C is close to 1, the distance to observations 

within its clusters is much smaller than its distance to its nearest neighboring cluster, D  

(Kaufman & Rousseuw, 1990). As the silhouette approaches 0, we see that observation i  

becomes neutral between cluster C  and D . Finally, as the silhouette approaches -1, we 

see the worst case scenario (Kaufman & Rousseuw, 1990). In this case, observation i  has 

smaller relative distance to its nearest neighbor cluster D  than its actual cluster, so we 

expect that misclassification likely occurred in placing i  in cluster C  rather than D  

(Kaufman & Rousseuw, 1990).  

The average silhouette width, aggregated at the full data set level, can then be 

seen as a measure of the overall performance of the algorithm for a given number of 

clusters. In order to establish a baseline, we produce the average silhouette width for each 

number of clusters of the data ranging from 2c   to 10c , where c is the number of 
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clusters. We select 10c  as our upper bound because we only have 41 observations, and 

we expect more than 10 clusters will limit the insights that we can glean from the data. At 

the same time, we also do not choose a very small number of clusters simply because it 

produces the maximum average silhouette width. If a larger number of clusters produces 

a reasonable relative average silhouette width, we look to the larger number for our 

selection because it produces more diversity in the groupings.  

D. MISSING VALUE IMPUTATION 

Missing values are a significant consideration for our data set, so we must handle 

them with care. In order to impute the missing information, we elect to use the K-Nearest 

Neighbor (K-NN) quantile sampling method adapted in Kowarik and Templ (2016). 

Because each variable has approximately 70% or more of its data available, we believe 

the information available is sufficient for producing good imputations of the missing 

values by using the observations to which they are most similar. We choose this method 

over other options because we believe the others do not fit the structure of our data as 

well, and K-NN quantile sampling allows us to assess sensitivity of the clustering results 

to the missing values. 

The simplest form of data imputation involves simply using the mean, median, or 

in the case of categorical variables, the mode, in place of the missing values. But, this 

method does not capture the uncertainty or variability of the missing information or 

dependence among variables. To account for variability, missing values are often 

randomly imputed numerous times. And, they are sometimes generated from parametric 

distributions, but these typically require assumptions regarding the marginal distributions 

and independence among variables. For numeric variables, random normal variates can 

be generated with mean equal to the sample mean of the jth variable and standard 

deviation equal to the sample standard deviation of the variable j. Given we have 

categorical variables and the remaining variables are right or left skewed, normal 

distributions do not adequately capture the natural variation in our data. Other 

distributions like the triangular may be used in place of the normal distribution, but this 

approach also requires us to assume that the marginal distributions are independent. In 
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experimentation, we do impute numeric missing values using the triangular distribution 

where the minimum and maximum values are taken to be the first and fourth quantiles for 

each variable, and the mode is taken to be the median. But, our education variables (high 

school and bachelor’s degree) and our age distribution variables (under 18 and over 65) 

are dependent. We require a method for final analysis that captures the dependence. 

Another common method for handling missing data uses bootstrapping 

techniques. In a basic bootstrap, we sample values from those observed in column j  and 

replace those missing in variable j  with the randomly selected values. This provides us 

with variability and maintains the marginal distributions of the variables, but we risk 

including the values associated with extreme outliers in locations where we know that we 

cannot reasonably expect them to exist. For example, the data available for Chongqing 

included a road network of over 87,000 miles (China Data Online, 2017), the next closest 

city using Gower distance was Delhi with a road network of almost 14,000 miles 

(Indiastat, 2017), and the mean road network length for the full data set was only 

approximately 6,500 miles. With five of the values for the road network variable missing, 

we find the risk of Chongqing’s road network being used as the imputed value for other 

cities to be unreasonable when it can be avoided. 

 Van Buuren (2012), also provides several techniques that can be used to impute 

missing data. Each of them has strengths and weaknesses and can be used for binary, 

continuous, or categorical variables. His Multiple Imputation by Chained Equations 

(MICE) algorithm samples from the observed data and imputes the missing data on a 

variable-by-variable basis and repeats the imputation multiple times in order to produce 

multiple datasets. MICE can perform a combination of univariate imputation techniques, 

which allow the user to control the method applied to each individual column, including 

using the mean, bootstrapping, linear regression, and stochastic regression among others 

for data transformation that do not apply to here (Van Buuren, 2012). Unfortunately, his 

work generally is not intended to perform particularly well in the presence of small data 

sets with data missing not at random (MNAR), as is the case in this study.  
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As a result of these challenges, we take on the approach of random sampling from 

the data set using characteristics inherent to the data. The K-NN imputation algorithm 

calculates the distance between observations using an extension of Gower’s method 

(Kowarik & Templ, 2016). Then, using the calculated distances, it identifies the k 

observations to which it is closest. One major benefit is that this method allows the user 

to select the value of k. Once the k-nearest neighbors are identified, the K-NN algorithm 

uses the statistical properties of those nearest neighbors to calculate an imputed value for 

the observation with missing information (Kowarik & Templ, 2016). For example, say 

we have a missing value for Hyderabad in poverty rate, and its 4k   nearest neighbors 

are Delhi, Mumbai, Kolkata, and Bangalore. As a default, the K-NN algorithm will 

calculate the median poverty rate for Delhi, Mumbai, Kolkata, and Bangalore, and then it 

will impute that number into the missing value for Hyderabad. We call this K-NN median 

imputation. While this gives us some additional information, it is not stochastic in the 

sense that the imputed value for the nearest neighbors will not change. Fortunately, the 

K-NN algorithm also allows the user to create their own aggregation method to calculate 

the imputed value, which significantly increases the flexibility of the algorithm (Kowarik 

& Templ, 2016). The aggregation method simply defines how the K-NN algorithm will 

use the data from the nearest neighbors to calculate the missing value.  

As we discuss earlier in Chapter IV, most of our data is right or left skewed. 

Recall from Figure 4 in Chapter III showing the side-by-side boxplots that poverty rate is 

right skewed due to a few high values like the 62% poverty rate found for Lagos (Open 

Data for Africa, 2017a). Extreme values like this one shift the mean poverty rate to 

18.65%, while the median value is 11.98%. Therefore, by using the K-NN algorithm, we 

are much better positioned to capture a likely value for the missing data because we use 

similar observations. We add randomness for numeric variables by randomly generating 

an imputed value from a uniform distribution between the minimum and maximum value 

of the k-nearest neighbors. A discrete uniform is used for integer variables and a 

continuous uniform is used for others. Hence, we are not limited to only producing values 

that appear in the data set. This allows any value within that range to be imputed for 

continuous variables and any integer to be imputed for discrete variables. We do not 
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implement a technique for categorical variables because our binary indicators in our data 

set are treated as integers, and the categorical variable for religion does not have missing 

values. In what follows, we call this type of imputation K-NN quantile imputation 

because we use the minimum and maximum – the smallest and largest empirical quartiles 

from the k-nearest neighbors. 

E. CLUSTER ENSEMBLES 

Using the terminology from Hornik (2005), a “clustering” is a partition of the data 

set that has been divided into c groups. In contrast, clusters are individual groups labeled 

from 1 to c to identify the group within the clustering. Hornik (2005) outlines the 

methodology for producing multiple clusterings for a given set of observation, for 

example, re-sampling the data. Sets of clusterings are known as ensembles. Hornik 

(2005) also defines distances between clusterings that allow us to identify the levels to 

which the different clusterings agree or disagree. If clusterings A and B agree, we expect 

that the observations that cluster together in clustering A will also cluster together in 

clustering B. This is particularly beneficial for our study where we are identifying the 

effects of changes in imputed values.  

We use the R packages CLUE (Hornik 2005) to take an ensemble of clusterings 

and calculate the distance between pairs in the ensemble. CLUE can also produce what 

Hornik (2005) refers to as the consensus cluster. We recommend readers review Hornik 

(2005) for further review of his methods for ensembles of clusterings. In essence, the 

consensus cluster reveals the cluster to which each observation belongs, “averaged” over 

the clusterings in the ensemble. With clusterings formed by randomly imputing large 

amounts of missing data, this gives us a sense of the typical clustering. We can also 

compare this consensus clustering to results obtained from clustering with missing values 

in order to observe any meaningful changes.  

Hornik (2005) constructs the consensus clustering through both hard and soft 

clustering. In hard clustering, each observation is identified with only one cluster. Soft 

clustering assigns a weight to each cluster for each observation. If there are c clusters in 

the result, an observation will have a weight of between 0 and 1 for each of the c clusters, 
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which sum to 1. In cases of soft clustering where an observation has a weight close to or 

equal to 1, we can say that the observation generally belongs with the other observations 

in that cluster. And, as the weight decreases and is spread across clusters, we can say that 

its assignment may be unclear or indifferent between clusters on average. This captures 

the uncertainties that we seek in identifying how sensitive our clusters are to changes in 

the missing data.  

For our work, this capability allows us to impute missing values several times and 

then use the resulting data sets with missing values to produce a clustering for each one 

separately. Specifically, we use the K-NN imputation technique to generate 5,000 

different data sets of our 41 observations. Using Gower distances with PAM clustering, 

we compute 5,000 sample clusterings corresponding to our 5,000 data sets. With these, 

we then use the cluster ensemble algorithm from the CLUE package in order to produce 

an ensemble of clusters, from which we calculate a clustering distance matrix. The 

clustering distance matrix gives us the distances between each pair of clusterings in the 

ensemble and enables us to generate both the hard and soft consensus clusterings. We use 

classical multidimensional scaling to then map the 5,000 clusterings to a two dimensional 

space, such that the Euclidean distance between points in the two dimensional space is 

approximately equal to their respective clusterings’ distances (Gower, 1966). This allows 

us to observe the variability in the clusterings because we can visualize each clusterings’ 

location relative to all others in a standard Cartesian coordinate plot. This also permits us 

to see how similar our exploratory clusterings are to clusterings in the ensemble and to 

each other. Specifically, we compare the ensemble to the baseline, the consensus, the K-

NN median, and to a realization of a clustering using missing data imputed from marginal 

triangular distributions. 



43

V. RESULTS AND ANALYSIS 

In this chapter, we build clusterings using the techniques outlined in Chapter IV to 

identify the underlying structure of the cities in our data set. First, we determine the 

number of clusters to use by analyzing the base data using Gower’s distance. We then 

discuss in detail the clustering results for this number of clusters and no imputation of 

missing values. In order to capture the uncertainty of the missing values, we then use K-

NN quantile sampling to impute the missing values and form an ensemble of 5,000 

clusterings, from which we compute consensus clustering. Finally, we draw comparisons 

between the clusterings and provide a final discussion comparing our results to those 

found in previous work.  

A. SELECTING THE NUMBER OF CLUSTERS 

When we calculate the average silhouette width for 2c   to 10c , we find that 

4c   produced the best average silhouette width using Gower’s distances and PAM for 

clustering. It produced a value of 0.238, which suggests there may be very little or no 

underlying structure in the data according to Kaufman and Rousseuw (1990). However, 

they also concede that this is a subjective guide based on their experience and may not 

apply a particular study. Hence, we recognize this as a challenge but do not find it 

particularly concerning for this study. In comparison, the next largest value in the average 

silhouette width plot proved to be 5c   with a value of 0.237. While this is slightly 

lower than the average silhouette width for 4c  , by using 5c  , we have an additional 

benefit of greater diversity in the clusters and the potential for more useful results. 

Because we seek to understand which cities are similar or different in interesting ways, a 

more diverse collection of clusters likely reduces the number of cities in each cluster. 

Generally, we expect this provides us greater insight into which cities are most similar. 

As a result, we elect to use 5c   as the appropriate number of clusters for the remainder 

of the study. 
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B. CLUSTERING WITH MISSING VALUES 

We use the PAM algorithm and Gower distance calculations to produce five 

clusters. We accomplish this without imputing missing data in order to establish a 

baseline clustering and allow us to see what changes occur when we incorporate imputed 

data. The results of this clustering can be seen in Table 5. We indicate the number of 

cities in each cluster in parentheses next to the cluster number. Additionally, as discussed 

in Chapter IV, PAM uses medoids as the representative cities for each cluster. We 

indicate these representative cities in each cluster with an M in parentheses next to the 

name of the city. These medoids provide us with a barometer for what we can expect in 

the features of variables for other cities in the cluster.  

Table 5.   Clusters Using Missing Values and c = 5 

Cluster 1 (10) Cluster 2 (6) Cluster 3 (6) Cluster 4 (12) Cluster 5 (7) 
New York 
Los Angeles 
Chicago 
Washington, DC 
Dallas-FW 
San Francisco 
Philadelphia (M) 
Boston 
Toronto 
London 

Beijing 
Tianjin (M) 
Shanghai 
Chongqing 
São Paulo 
Rio de Janeiro 

Delhi 
Mumbai 
Kolkata 
Bangalore (M) 
Hyderabad 
Johannesburg 

Lagos 
Nairobi 
Baghdad 
Jakarta 
Bangkok 
Manila 
Mexico City 
Moscow 
Istanbul 
Buenos Aires 
Lima (M) 
Ho Chi Minh City 

Cairo 
Kinshasa 
Karachi 
Al-Riyadh 
Tehran 
Kabul 
Dhaka (M) 

The table shows which cities fall into each one of the five clusters. In parentheses, we show the 
total number of cities in each cluster next to each cluster label. And, the “M” next to one city in 
each cluster represents that city being a “medoid” or the representative city for that cluster.  

Of note, the western cities tended to cluster together despite their differences. 

These cities vary in non-trivial ways with regard to their infrastructure and economic 

power, and yet, they are still more similar within that cluster than they are to other cities. 

Additionally, Chinese cities and Indian cities dominate clusters two and three, 

respectively. In contrast the Middle Eastern, African, South American, and Southeast 

Asian cities spread across multiple clusters, which illustrates geographical proximity may 

not necessarily dictate similarities or differences among cities. South American cities are 
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split between clusters two and four, and African cities are split between clusters three, 

four, and five. When we examine the clusters using parallel coordinate plots (Venables & 

Ripley, 2002) we are able to see if particular variables drive cities into one cluster or 

another. Figure 5 uses the transportation network variables including the presence of a 

seaport, number of airports, the road network, and rail networks to identify key 

differences in the data for each cluster. Each number in the legend corresponds to its 

related cluster number from Table 5. For example, the number 4 line in Figure 5 

corresponds to the cities located in cluster 4. All variables in Figure 5 are transformed to 

be between 0 and 1. Missing values are not plotted and can be seen as discontinuities (or 

breaks) in a city’s line. 

Figure 5.  Comparison of Base Clusters Using Transportation Network Data  

In Figure 5, the legend indicates the cluster number associated with each color and the 
vertical axis indicates the range of possible values for each variable, where each line 
represents a different observation. We note that Subway and Seaport are binary, which 
shows the clusters splitting between those with that type of infrastructure and those 
without. The Indian cities (in blue) cluster around a large number of regional airports, and 
the Middle Eastern, African, and Southeast Asian cities in clusters 4 and 5 cluster around 
no subways and the smallest road networks and rail networks. Sources used for 
compilation can be found in Appendix C, and plotted using techniques from Venables & 
Ripley (2002). 

When we examine the parallel coordinate plots, we see that cities without a 

subway like Karachi, Tehran, and Kabul clustered together and tend to have less robust 
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road and rail networks. In contrast, cities in the U.S. (cluster 1 in red) tended to have 

more robust transportation networks and more international airports. Interestingly, the 

cities in cluster 3, mostly represented by India, tended to have a larger number of regional 

airports. Throughput through seaports in TEUs (twenty-foot equivalent units) and tons do 

not seem to clearly delineate clusters to the same degree as some of the other variables, 

with the exception of a large number of cities from cluster 4 in the middle of the seaport 

cargo throughput range in TEUs. We also note the large outlier in the road network and 

rail network variables from cluster 2. As discussed in Chapter IV, Chongqing has 

extreme values for variables, but they do not seem to exert undue influence over how the 

cities cluster. Next, we examine the parallel coordinate plots (Venables & Ripley, 2002) 

for utilities such as Internet, telecommunications, sanitation, electricity, and water using 

Figure 6. 

Figure 6.  Comparison of Clusters Using Utility Network Data 

In Figure 6, the western cities in cluster 1 dominate the upper bounds in access to 
utilities. Cities in cluster 5 have low access, and cluster 3 is inconsistent. In some cases 
the Chinese cities (in green) cluster toward the bottom of access and in others they cluster 
toward the top, as is the case in telecommunications access and sanitation. Beyond author 
knowledge of the data set, we can tell they are the Chinese cities the way they move in 
unison for each variable, much the same way the India or U.S. cities cluster together. 
Sources used for compilation can be found in Appendix C, and plotted using techniques 
from Venables & Ripley (2002). 
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In Figure 6, we see that the western cities reside primarily at the upper bounds of 

each variable pertaining to utility access. The U.S., Canada, and United Kingdom all have 

robust utility networks and broad access to telecommunications, clean water, and 

sanitation. Cities in China that make up the majority of cluster 2 tend to be inconsistent 

with where they fall in the ranges of values. In the case of telecommunications and 

electricity they reside near the bottom, but they have broad access to the Internet and 

sanitation. The Indian cities from cluster 3 have good telecommunications access, but 

they tend to have lower values for some of the other variables. In contrast, the variability 

in cities from clusters 4 and 5 seems to be greater than that of the other 3 clusters. For 

example, cities from cluster 4 have all ranges of Internet access and sanitation access 

levels, which shows they are interspersed among other clusters in these categories. This 

may influence distance calculations and cause some cities in clusters where this occurs to 

be less dissimilar to neighboring clusters than we desire, thereby reducing the 

performance of the clustering algorithm. 

We examine the plots (Venables & Ripley, 2002) for access to emergency 

services in Figure 7. This plot compares the clusters for the number of hospitals, police 

stations, fire stations, military bases, and indicators for state or national capitals.  
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Figure 7.  Comparison of Clusters with Emergency Service Access and 
Government Data 

 
Figure 7 shows that the data for emergency service and government infrastructure do not 
clearly separate the ranges of data into clusters. But, cities from cluster 1 in the west tend 
to have the most fire stations and are primarily the only cities that are not state or national 
capitals, while cities in cluster 4 tend to have the most military bases. Sources used for 
compilation can be found in Appendix C, and plotted using techniques from Venables & 
Ripley (2002). 

We see that the data for access to emergency services and government 

infrastructure do not seem to clearly separate cities into clusters with the exception of a 

few examples. The western cities from cluster 1 tended to have more fire stations and are 

generally not state or national capitals. And, cities in cluster 4 tend to have a large 

number of military bases. While we believe this type of data is important to analyzing the 

differences among megacities, we recognize the potential weaknesses it poses for our 

analysis. Improvements in data quality through more accurate sources or different 

indicators may improve results in future studies. For example, instead of the absolute 

totals for fire stations, police stations, and hospitals, future work can examine the per 

capita values. Or, hospital data could focus on the number of beds or operating rooms per 

1000 people, and police data may also include violent and non-violent crime rates per 

1000 people.  

We show the resulting clusters for economic data in Figure 8. The economic data 

includes the GDP/GRDP, average household income, poverty rate, percent of high school 
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or equivalent graduates, and percent of persons with bachelor’s degrees. As discussed in 

Chapter III, these variables provide an indication of the overall economic health of a 

particular city.  

Figure 8.  Comparison of Clusters with Economic Data 

Figure 8 shows that the cities in cluster 1 again diverge from the remaining urban areas. 
With large average incomes and GDP, high percentages of educated people, and low 
poverty rates, these cities cluster well. The cities in cluster 5 generally have the lowest 
incomes and GDP and relatively higher poverty rates. We also note that the majority of 
cluster 5 has missing data for education rates, annotated by breaks in their lines. Sources 
used for compilation can be found in Appendix C, and plotted using techniques from 
Venables & Ripley (2002). 

The clusters illustrate which cities cluster around strong economies, which cities 

are in developing economies, and which cities generally have the weakest economies. 

The economic data reveals clusters in the data more effectively than government and 

emergency services, but we continue to see large groups of observations at the upper or 

lower ends of the spectrum. Notably, western and Indian cities cluster together at high 

levels of high school education, but the western cities separate to higher levels of 

bachelor’s education and above. All cities in clusters 2 thru 5 have lower average 

incomes and GDP/GRDP than the cities in cluster 1. However, within clusters 2 thru 5, 

the cities are interspersed and do not distinguish themselves into groups effectively. 

Hence, these variables may also negatively influence the average dissimilarity between 
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clusters. Interestingly, the cities in cluster 5 tend to have missing values in their education 

variables, which may impact the ability of additional information to shift the cluster 

locations of those cities including the cities in the Middle East, Kinshasa, and Dhaka. 

In the results for demographic variables, we show the age distribution, average 

household size, population density, and literacy rate. Figure 9 shows how these variables 

influence the cluster of our data with the missing values. 

Figure 9.  Comparison of Clusters with Demographic Data 

Figure 9 shows the dispersion of clusters among various levels in the demographic 
factors. Breaks in the lines for observations indicate that the variable is missing for a 
given observation. Notably, Cluster 5 cities tend to have missing information in their 
demography, but the information available seems to correspond to larger household sizes, 
less people over 65 years old, and more young people. Sources used for compilation can 
be found in Appendix C, and plotted using techniques from Venables & Ripley (2002). 

We see in Figure 9 that clear delineations between clusters are also difficult when 

comparing demographic data. We notice that the U.S. cities surprisingly reside toward the 

bottom in literacy despite their strong education rates displayed in Figure 8. This is an 

interesting dynamic and may point to differences in how different cities and countries 

define literacy standards. The cities in cluster 5 have large amounts of missing information 

in their age distributions as seen by the breaks in their lines going from variable to variable. 

However, the information available suggests that they are somewhat similar to cities in 
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cluster 4 in the sense of having relatively high percentages of young people and relatively 

low percentages of older people 65 and up. This generally matches with conventional 

wisdom and data for their countries. According to the Knoema (2017), only 2.5% of 

Afghanistan’s and 5.0% of Bangladesh’s populations have ages 65 or above.  

As we discuss earlier in Chapter IV, the observations we expect to be most at risk 

of transitioning between clusters in the presence of imputed values are those with low 

silhouette widths and observations with more missing data than other observations within 

their cluster. Observations with small silhouette widths ( 0 ) are more similar to their 

nearest neighboring cluster than their actual cluster, which, when coupled with more 

missing data, clearly creates more opportunity for an observation to move between clusters. 

This also applies to observations in the neighboring cluster. The addition of imputed data 

will inevitably change the Gower’s coefficient between two observations, particularly those 

with more missing data. And, as a result, the changes may drive them closer together or 

farther apart.  

To further illustrate this, we also note inter-cluster average silhouette widths and 

some key observations with particularly low silhouette widths that may be prone to shifting 

with imputed data. The average silhouette widths for each cluster are displayed in Table 6. 

Recall, the average silhouette width associated with a cluster is the sum of all the 

observation silhouettes in the cluster divided by the number of observations in the cluster. 

While this generally signals how distinct a cluster is relative to all others, we note that there 

can certainly be observations within a cluster that are well above or well below the average. 

Table 6.   Average Silhouette Width for Each Cluster with Missing Data and c=5 

Cluster 1  Cluster 2 Cluster 3 Cluster 4 Cluster 5 
0.37 0.33 0.41 0.03 0.18

Table 6 shows that cluster 3 with Indian cities is the most distinct from the others on average, 
with the next being cluster 1 with the western cities. Cluster 4 contains mostly African and 
Southeast Asian cities, and this represents a likely choice for movement due to changes in the 
data, followed by cluster 5. Recall, silhouettes near 0 signify indifference between an 
observation’s cluster and its nearest neighboring cluster. 
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Clusters 1, 2, and 3, containing the western cities, Chinese cities, and Indian cities, 

respectively, are clearly the most distinct. Then, we notice a large drop in the average 

silhouette widths for clusters 4 and 5. This is important to note because, these 

observations tend to have the most missing values in addition to not being significantly 

distinct from their nearest neighbors. Specific to cluster 4, Lagos, Nairobi, Istanbul, 

Baghdad, and Moscow each have negative silhouettes relative to their nearest 

neighboring cluster. Our results also show their next nearest neighbor being clusters 5, 5, 

3, 5, and 1, respectively. For example, these results indicate that Lagos is actually more 

similar to observations in cluster 5 than cluster 4 and may have been misclassified. 

Surprisingly, these results indicate that Moscow is more similar to the western cities in 

cluster 1 than its current cluster (4). Hence, we may expect them to be “first movers” and 

transition to their nearest neighboring cluster in the presence of changing data. In 

contrast, all cities in clusters 1, 2, and 3 have relatively higher silhouette widths. Hence, 

while some observations may change due to the stochastic nature of the data imputation, 

we do not expect significant movements from cities currently in these clusters.  

C. CLUSTERING WITH DATA IMPUTATION 

We begin clustering using PAM with Gower distances based on data imputation 

using K-NN median imputed values with 5k   for 2, ,10c    to see if the data 

imputation produces dramatic changes in the number of clusters. Our results indicate that 

the data imputation does not change the results in a significant way. In fact, 5c   

clusters produces a larger average silhouette width than 4c   clusters with totals of 

0.271 and 0.259, respectively. 

The resulting clusters can be seen in Table 7. They illustrate that imputation of the 

missing data can influence the clusters to which some of the cities belong. And, the cities 

most impacted are the cities with more missing data. Recall, K-NN median imputation is 

not stochastic in nature, so we do not require multiple samples. We show this result as a 

building block to the ensemble of clusterings we will generate in Section D. 
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Table 7.   Clusters Using K-NN Median Imputed Data and c=5 

Cluster 1 (11) Cluster 2 (5) Cluster 3 (6) Cluster 4 (8) Cluster 5 (10) 
New York 
Los Angeles 
Chicago 
Washington, DC 
Dallas-FW 
San Francisco 
Philadelphia (M) 
Boston 
Toronto  
London 
Moscow[4] 

Beijing  
Tianjin (M) 
Shanghai 
Chongqing 
São Paulo  
Rio de Janeiro 

Delhi 
Mumbai 
Kolkata 
Bangalore (M) 
Hyderabad 
Johannesburg 

Lagos 
Jakarta 
Bangkok 
Manila 
Buenos Aires 
Lima (M) 
Ho Chi Minh 
City 
Istanbul 

Cairo 
Kinshasa 
Al-Riyadh 
Kabul 
Karachi 
Tehran 
Dhaka 
Nairobi[4] 
Baghdad[4] (M) 
Mexico City[4] 

Table 7 illustrates how the clusters shift in the presence of one run of imputed data. The cities 
highlighted in yellow changed, and their corresponding number in brackets indicates the cluster 
number from the results in Table 5. We note improved balance among the number of clusters in 
each category and changes in the medoids. Baghdad changed clusters and became a medoid. 

We see in Table 7 that four cities change clusters when we add the imputed data. 

We also find it interesting that Baghdad shifted from cluster 4 to cluster 5 and 

simultaneously became the medoid for cluster 5. Clearly, the Chinese, U.S., Brazilian, 

and Indian cities remain consistent in their clusterings. We find this interesting because 

U.S. cities accounted for the only cities within those groups that contain no missing 

values.  

As discussed at the end of Section B in Chapter V, we obtain some movement 

from cities with low silhouettes. Notably, Nairobi, Moscow, and Baghdad each move to 

their nearest neighboring cluster. However, Lagos remains in cluster 4 despite having a 

negative silhouette in the original clustering. These results improve the average silhouette 

widths for each cluster when we use the median of the K-NN. And, this makes sense 

theoretically because we are drawing observations nearer to the observations to which 

they are already closest. Table 8 shows the average silhouette widths when we 

incorporate the K-NN algorithm with the median, compared to the base results.  



 54

Table 8.   Comparison of Base Data with Missing Values and K-NN Median 
Imputed Average Silhouette Widths  

Method Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Missing Data 0.37 0.33 0.41 0.03 0.18 
K-NN Median  0.35 0.36 0.38 0.12 0.18 

Percent 
Change (%) 

-5.4 9.1 -7.3 300.00 0.0 

Table 8 shows that using K-NN median imputation significantly improves the average silhouette 
width for cluster 4, which makes sense because approximate 34% of the missing values in our 
data set come from cluster 4. Therefore, when imputing data to nearest neighbors, we can expect 
they will become similar in a more significant way than other clusters. 

From Table 8, we note that the average silhouette width of cluster 4 increases by 

approximately 300%. This indicates that the data imputation improved the similarities 

among the cities in cluster 4 by transitioning to some other clusters and making those 

within cluster 4 more similar. Given that approximately 34% of the missing values in our 

base data set come from cluster 4, it is reasonable that imputing missing values would 

have the most impact on the distances within that cluster. Interestingly, we see that 

cluster 5 did not change significantly despite adding observations from cluster 4 and 

imputing missing values.  

D. CLUSTER ENSEMBLES 

In this section, we show the results of generating an ensemble of clusterings. As 

outlined in Chapter IV, we use K-NN quantile sampling to randomly impute missing 

values 5,000 times. With the resulting 5,000 sets of data, we produce the Gower distances 

and PAM clustering for each sample. Then, we apply the clustering ensemble algorithm 

to compute the ensemble distances, and use these to map the 5,000 clusterings to two-

dimensional space using classical dimensional scaling, as displayed in Figure 10.  
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Figure 10.  Ensemble Clusterings Mapped to Two Dimensional Space for 
Visualization  

Figure 10 illustrates the ensemble of clusters mapped to a two-dimensional space, where 
each point represents a clustering.  

In Figure 10, each point represents a clustering. And, using K-NN quantile 

sampling, we see that two primary groups of clusterings form, separating the data 

approximately where the x-axis is equal to 1.10. This is an important distinction because 

we also find that only 642 of the 5,000 observations have a horizontal axis value greater 

than 1.10, which suggests that the majority of the clusterings resides are “closer” 

together. However, this display of the data suggests that certain clusterings can be in 

disparate locations and produce differing results. For example, at the maximum point 

along the x-axis (x=3.18), we notice some non-trivial differences from how the cities 

cluster in Table 7. Ho Chi Minh City and Toronto both cluster with the Indian cities 

(cluster 3), Buenos Aires clusters with the western cities (cluster 1), and São Paulo forms 
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a cluster with only Tehran, Bangkok, Jakarta, and Istanbul. This result illustrates how 

significant changes in the data can influence the clusterings in extreme cases.  

With the understanding of what can occur in extreme instances, we then use the 

data resulting from the ensemble to cluster the cities into a consensus or average 

clustering. And, we outline results for both hard and soft consensus clusterings. The hard 

consensus clusters can be observed in Table 9. 

Table 9.   Consensus Clustering using a Cluster Ensemble of K-NN Quantile 
Sampling of Imputed Data and c=5. 

Cluster 1 (10) Cluster 2 (6) Cluster 3 (6) Cluster 4 (9) Cluster 5 (10) 
New York 
Los Angeles 
Chicago 
Washington, DC 
Dallas-FW 
Philadelphia 
San Francisco 
Boston 
Toronto 
London 

Beijing 
Tianjin 
Shanghai 
Chongqing 
São Paulo 
Rio de Janeiro 

Delhi 
Mumbai 
Kolkata 
Bangalore 
Hyderabad 
Johannesburg 
 

Lagos 
Jakarta 
Bangkok 
Manila 
Moscow 
Istanbul 
Buenos Aires 
Lima 
Ho Chi Minh City 

Cairo 
Kinshasa 
Karachi 
Al-Riyadh 
Tehran 
Kabul 
Dhaka 
Nairobi[4] 
Baghdad[4] 
Mexico City[4] 

Table 9 shows the changes in cluster from the baseline data when we incorporate an ensemble of 
clusters. We see that the consensus cluster from our ensemble more closely represents our 
baseline cluster than one randomly generation repetition imputation of missing data.  

Because the resulting hard clusters are very similar to those in our baseline 

clusters (92.7% consistent), we do not analyze the results in detail. But, they indicate that 

the clusters are generally stable in the long run with the exception of Nairobi, Baghdad, 

and Mexico City. Mexico City represents the most interesting shift among these cities 

because it possessed the largest silhouette width among the four that shifted as well as a 

larger value than Lagos or Moscow in the baseline clusters. For Moscow, this result also 

shows the difference between imputing the median of the five nearest neighbors versus 

the long run consensus cluster. When we use the median of its five nearest neighbors, we 

see that Moscow clusters with the western cities in cluster 1. But, when we allow for 

quantile sampling, it clusters more closely with the cities in cluster 4.  
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Given the resulting graph in Figure 10 and the subsequent changes due to data 

imputation, it is unlikely that we can truly force each of these cities into solely 

representing one cluster. Cities like Mexico City and Moscow that are known to switch 

clearly possess properties that make them good candidates to shift to their neighboring 

clusters. Therefore, we find it useful to illustrate this by examining the soft consensus 

clustering method for ensembles because it allows for weighted clusters. We expect 

observations with weights close to 1 to be strongly associated with the highly weighted 

cluster. And conversely, we expect observations with close or equal to zero weight in a 

cluster to have virtually no association with that cluster. Weights between 0.10 and 0.90 

that spread across multiple clusters suggest that the observation is sensitive to changes in 

the data. For example, a city with equal weight of 0.50 spread across two different 

clusters indicates a level of indifference between the two clusters. In Table 10, we show 

the cities that possess at least some level of uncertainty in their clustering. The remaining 

cities all have a cluster weight of 1.0 and are associated with their cluster from the 

consensus clustering in Table 9. And, we denote the dominant cluster for each of the 

cities in this group by highlighting the weight applied to its dominant cluster in yellow. 
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Table 10.   Table of Soft Clusters Showing Weights to Each Cluster 

City Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Toronto 0.89 0.00 0.11 0.00 0.00 

Lagos 0.00 0.00 0.00 0.74 0.26 

Cairo 0.00 0.00 0.00 0.01 0.99 

Nairobi 0.00 0.00 0.00 0.06 0.94 

Karachi 0.00 0.00 0.01 0.05 0.94 

Baghdad 0.00 0.00 0.00 0.02 0.98 

Tehran 0.00 0.00 0.01 0.09 0.90 

Jakarta 0.00 0.00 0.00 0.96 0.04 

Manila 0.00 0.00 0.00 0.90 0.10 

Mexico City 0.00 0.00 0.00 0.15 0.85 

São Paulo 0.22 0.77 0.00 0.01 0.00 

Moscow 0.32 0.00 0.00 0.68 0.00 

London 0.97 0.00 0.00 0.03 0.00 

Istanbul 0.00 0.00 0.22 0.78 0.00 

Buenos Aires 0.10 0.00 0.00 0.90 0.00 

Lima 0.00 0.00 0.00 0.87 0.13 

Ho Chi Minh City 0.00 0.00 0.05 0.94 0.01 

Rio de Janeiro 0.11 0.89 0.00 0.00 0.00 

Table 10 only displays the cities for this study that do not have a weight of 1.0 in a single cluster. 
Consider this a table of uncertainty for these cities. In essence, the weights provide an indication 
of how strongly each observation associates with the cluster listed in the column. You can see 
Moscow has the weakest association with its dominate cluster. 

The majority of observations in Table 10 are closely associated with one cluster 

and significantly less associated with others. But, it is important we note that some level 

of uncertainty exists. We focus on the cities with the most uncertainty in their cluster. São 

Paulo is more strongly associated with cluster 2 and has a secondary association with the 

western cities in cluster 1. Lagos, Istanbul, and Moscow more closely associate with 

cluster 4 but clearly have strong secondary associations to clusters 5, 1, and 3, 

respectively. Furthermore, if we compare the results of the hard clustering in Table 9 with 

the soft clustering in Table 10, we see that none of the observations associated with 

cluster 4 have a weight of 1. This confirms the intuition behind our results comparing the 

K-NN median sample to the base sample. Approximately 34% of the missing values form 

our data set come from cluster 4. Hence, we confirm the cities in that cluster are more 
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susceptible to deviations than others due to their missing data. Moreover, cluster 4 is the 

only cluster where no observations have a weight of 1.0. 

E. ENSEMBLE CLUSTERING COMPARISON 

To better illustrate the differences between the 5,000 K-NN quantile sample 

clusterings, our consensus clustering, the K-NN median clustering, and our base 

clustering, we generate the ensemble distances between each of them and use classical 

multi-dimensional scaling to show them on a 2-D plot. We note that, for exploratory 

purposes, we also include an example where the imputed values are sampled from 

triangular distributions approximating the marginal distribution of the corresponding 

variable. First, we generate an ensemble of the 5,004 different clusterings. Then, we use 

classical multidimensional scaling to map them into the plot shown in Figure 11. 

Figure 11.  Comparison of 5,000 K-NN Quantile Samples to Base Clustering, 
Example Imputed Data Clusterings, and Consensus Clustering. 

 
Figure 11 compares the results from earlier in Chapter V to our ensemble of clusterings 
and our consensus clustering. As shown, we see that the consensus cluster (blue) and base 
cluster (yellow-with missing values) are very similar. We also see that all base clusterings 
and the consensus cluster reside in the group of sample clusterings to the left outlined in 
purple, which consists of over 4,300 of the 5,000 samples. 
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The results in Figure 11 show us that the clustering results from using Gower’s 

distance with using missing values are not very different from the consensus clustering. 

And in fact, Gower’s distance with missing values is closer to the consensus clustering 

than using the K-NN median result or the triangular distribution example. We also notice 

that each of the three clusterings produced using other methods and the consensus cluster 

fall within the same generally area in Figure 11 as the group of K-NN quantile samples 

outlined in purple. This suggests that the clusterings outlined in green are more unlikely 

events and do not reflect what we can most likely expect to occur in our clustering. 

Moreover, it demonstrates how well Gower’s method performs even when using a data 

set with 8–10% of its values missing. Clearly, translating observations into clusters using 

Gower’s method to calculate the distances is relatively robust to missing data.  

F. CONSENSUS CLUSTERING MEANS 

The consensus clustering allows us to see how the cities cluster together on 

average, but it does not necessarily provide details of how the data is structured to 

produce those values. In order to do this, we use the results of the K-NN quantile 

sampling and the classical multidimensional scaling to see which data set is most similar 

to the consensus cluster. In our simulation of 5,000 runs of K-NN quantile sampling, 968 

data sets produce a clustering result that covered the same two dimensional space as the 

consensus clustering (x=-0.580, y=0.105). To illustrate an example, we extract an 

example data set from our list and produce parallel coordinate plots of the average values 

for each variable by cluster. In this case, we use the average value in order illustrate what 

we can expect from the types of cities that associate with each cluster. And, because it 

shows only five lines, we can more clearly delineate the relationships between each 

cluster vice each individual observation. We generate the parallel coordinate plots 

(Venables & Ripley, 2002) in the same combinations of variables we use for the missing 

data results. Figure 12 shows the transportation network variables, Figure 13 shows 

access to utilities, Figure 14 shows government services, Figure 15 shows economic data, 

and Figure 16 shows demographic data.  
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Figure 12.  Consensus Clustering Mean Transportation Network Values 
Comparison. 

  
Figure 12 illustrates that most cities in cluster 4 have a seaport and robust international 
airport networks, but they lack robust road and rail networks. The cities from cluster 2 
tend to have large ground and water transportation networks but less robust air 
transportation networks. Sources used for compilation can be found in Appendix C, and 
plotted using techniques from Venables & Ripley (2002). 

Figure 12 shows what we can expect to observe from the cities in each cluster, on 

average, for their transportation networks when we account for imputed data. The 

transportation network data did not contain many missing values, so we see that the 

results closely resemble those from our baseline data. We see that cities such as Nairobi, 

Kinshasa, and Bagdad in cluster 5 tend to have less robust transportation networks across 

all transportation variables. Similarly, cities in cluster 4 like Lagos, Jakarta, and Istanbul 

tend to have less robust transportation networks as well. But, they tend to differentiate 

themselves by having access to a seaport. In fact, cluster 4 clearly had the most cities 

with seaport access. In contrast, the cities in cluster 2, the Chinese and Brazilian cities, 

tend to have more robust ground transportation networks but less access to air 

transportation. Again, we see that the cities in cluster 3, mostly from India, tend to have 

large networks of regional airports and throughput through seaports in TEUs despite a 

limited number of cities with seaport access. The western cities in cluster 1 clearly 

dominate international air transportation and have robust public transportation networks 

in the form of subways.  
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Figure 13.  Consensus Clustering Mean Utility Network Values Comparison. 

 
Figure 13 compares access to various utility networks among the five clusters. On 
average, the western cities clearly have the most access to utility services which makes 
sense. Interestingly, the cities in cluster 2 (Chinese and Brazilian), have good access to 
utilities as well with the exception of telecommunications. Clusters 3, 4, and 5 show a 
common aspect of the developing world – good access to telecommunications but poor 
access to sanitation, water, and power. Sources used for compilation can be found in 
Appendix C, and plotted using techniques from Venables & Ripley (2002). 

We observe some common global trends regarding utility access in Figure 13. 

Western cities tend to be highly connected in this regard, which is not a particularly 

interesting result. However, when we look at the average trends for clusters 3, 4, and 5, 

we see a common component of the developing world. The cities in these clusters tend to 

have improved access to telecommunications over Internet access. However, they also 

tend to be characterized by poor access to basic sanitation, water needs and electricity. 

This is valuable in building our intuition about these large urban environments. For cities 

like these, we can expect them to lack robust infrastructure to provide these basic services 

to their citizens. Specific to cluster 4, when we couple this with the large percentage of 

Pacific Rim nations, we see that challenges with natural disasters such as typhoons or 

tsunamis can pose significant problems to the provision of basic utilities. In the context of 

combat operations, we also see that cities in clusters 3, 4, and 5 will also have broad 

access to the Internet and (mobile) telephones for messaging and information operations.  
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Figure 14.  Consensus Clustering Mean Government Service Values Comparison. 

 
Figure 14 displays the average availability of government services for each cluster in the 
consensus cluster. Sources used for compilation can be found in Appendix C, and plotted 
using techniques from Venables & Ripley (2002). 

The results in Figure 14 do not change significantly from the results in the base data 

section, in part because government services did not have large number of missing values. 

Figure 15.  Consensus Cluster Mean Economic Data Values Comparison. 

 
Figure 15 shows the average results for economic data in the consensus cluster. Cluster 5 
has high poverty rates. Clusters 2–5, all have low GDPs and average household incomes 
relative to the western cities in cluster 1, on average. Sources used for compilation can be 
found in Appendix C, and plotted using techniques from Venables & Ripley (2002). 
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Among the economic variables, education (High.School and Bachelors) contains 

the most missing values in the base data. In Figure 8 from Chapter IV, we see that 

clusters 4 and 5 contain a large number of missing values. And, the values that are 

available tend to be low. The results in Figure 15 suggest that, on average, the values for 

education tend to be higher with imputed data. This may indicate that more research is 

required into the education data for those cities with missing values. The variable for 

poverty rates also contained a large number of missing values, but we notice that the 

results do not change significantly from the base results. Cities in cluster 5 such as 

Kinshasa, Tehran, and Nairobi, tend to have high poverty rates among their populace and 

low purchasing power in the form of average annual income. 

Figure 16.  Consensus Clustering Mean Demographic Data Values Comparison. 

 
Figure 16 compares demographic data for each of the clusters. This depiction clearly 
displays that cities in the developed world have older populations, smaller household 
sizes, and lower population densities, whereas cities in the developing world tend to have 
young populations, large household sizes and dense city populations. Sources used for 
compilation can be found in Appendix C, and plotted using techniques from Venables & 
Ripley (2002). 

The depiction in Figure 16 clearly articulates the importance of accounting for 

dependence when imputing missing values. We can clearly see that cities with a high 

percentage of young people tend to possess a low percentage of older people and vice 

versa. Interestingly, however, the cities from clusters 3 and 4 tend to be relatively 

balanced. As we might expect, we also see that the developing world cities in cluster 4 
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and 5 tend to have large household sizes. These are important distinctions to make 

between cities in terms of human geography. Generally, the remaining variables are 

consistent with our base results. 

G. COMPARISONS TO PREVIOUS WORK 

Generally, our work compares favorably to the megacity work done previously in 

United States Army (2014) and Sapol (2016). First we compare the results of our work to 

that of United States Army (2014). Our results generally produce similar results, but we 

are able to do so with many more cities as well as more variables. This allows us to 

produce a more rich and diverse set of results. Table 11 compares our consensus cluster 

to those of United States Army (2014) where HC stands for highly connected, MC stands 

for moderately connected, and LC stands for loosely connected as depicted in United 

States Army (2014). 

Table 11.   Comparison of K-NN Consensus Clustering with U.S. Army Case 
Studies from United States Army (2014). 

Cluster 1 (10) Cluster 2 (6) Cluster 3 (6) Cluster 4 (9) Cluster 5 (10)
New York (HC) 
Los Angeles 
Chicago 
Washington, DC 
Dallas-FW 
San Francisco 
Philadelphia  
Boston 
Toronto  
London 

Beijing  
Tianjin  
Shanghai 
Chongqing 
São Paulo (MC) 
Rio de Janeiro (MC) 

Delhi 
Mumbai 
Kolkata 
Bangalore 
Hyderabad 
Johannesburg 
 

Lagos (LC) 
Jakarta 
Bangkok (MC) 
Manila 
Moscow 
Istanbul 
Buenos Aires 
Lima  
Ho Chi Minh 
City 
 

Cairo 
Kinshasa 
Al-Riyadh 
Kabul 
Karachi 
Tehran 
Dhaka (LC) 
Nairobi 
Baghdad  
Mexico City 

Table 11 shows our consensus cluster using the K-NN quantile sampling, along with the 
groupings from United States Army (2014) using a two letter code where HC signifies the city is 
highly connected, MC signifies the city is moderately connected, and LC signifies the city is 
loosely connect in United States Army (2014). Note the cities from our study that cluster with 
each city from United States Army (2014), given clustering groups cities that are most similar 
given a set of variables and number of clusters. 

As seen in Table 11, the cities with different levels of connectedness from United 

States Army (2014) generally do not cluster together in our study either. However, we see 

that Rio de Janeiro and São Paulo cluster together in both studies. Interestingly, Lago and 
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Dhaka were both loosely connected (LC) in United States Army (2014), but they are in 

clusters 4 and 5 in our study. And, Bangkok is moderately connected in United States 

Army (2014) but clusters with cities like Lagos in our study. This represents an 

interesting and useful result. When we can add more cities and more variables for 

comparison, we see that some cities that appear similar may not be, and conversely, some 

cities may actually be similar that do not appear so on the surface. In United States Army 

(2014), it appears as though Bangkok is more similar to São Paulo and Rio de Janeiro 

than to Lagos. However, we show that accounting for more detailed quantitative data on 

infrastructure, government services, economic development, and demographics draws 

Lagos and Bangkok closer together. Furthermore, when we refer back to Table 10 

showing the soft clusterings, we see that Bangkok has virtually no weight (0.01) 

associated with cluster 2 where São Paulo and Rio de Janeiro reside. And conversely, Rio 

de Janeiro’s weight in cluster 4 is 0.01, signaling it has virtually no association with the 

cities in that cluster on average. We expect the results that produced those very small 

values were extreme points and not representative of likely outcomes.  

Next, we compare the results of our study to those found in Sapol (2016). Recall, 

Sapol (2016) uses only two variables, GDP per capita and population density, to cluster 

megacities into six different groups. Table 12 shows the comparison between our results. 

We again use the cluster memberships from our consensus clustering, and we annotate 

the cities from Sapol (2016) with the numerical value of their tier in parentheses. 
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Table 12.   Comparison of K-NN Consensus Clustering with Megacity 
Classification Framework from Sapol (2016).  

Cluster 1 (10) Cluster 2 (6) Cluster 3 (6) Cluster 4 (9) Cluster 5 (10) 
New York (1) 
Los Angeles (1) 
Chicago 
Washington, DC 
Dallas-FW 
San Francisco 
Philadelphia  
Boston 
Toronto  
London (1) 

Beijing (3) 
Tianjin (3) 
Shanghai (3) 
Chongqing 
São Paulo (3) 
Rio de Janeiro (3) 

Delhi (4) 
Mumbai (6) 
Kolkata (5) 
Bangalore (5) 
Hyderabad 
Johannesburg 
 

Lagos (5) 
Jakarta (5) 
Bangkok (3) 
Manila (4) 
Moscow (2) 
Istanbul (4) 
Buenos Aires (3) 
Lima (4) 
Ho Chi Minh City (5) 

Cairo (5) 
Kinshasa (6) 
Al-Riyadh 
Kabul  
Karachi (6) 
Tehran (5) 
Dhaka (6) 
Nairobi  
Baghdad  
Mexico City (4) 

In Table 12, we identify the corresponding cluster from Sapol 2016. We note that he uses six 
clusters instead of five, but the majority of cities from his cluster 2 are not in this study with the 
exception of Moscow. We see that generally clusters 5 and 6 from his study coincide with 
clusters 4 and 5 from our study aside from Mumbai, Kolkata, and Bangalore. And, our cluster 2 
corresponds well with cluster 3 in Sapol (2016). 

While there are similarities between our consensus clustering and the clustering 

from Sapol (2016), we notice that additional variables and imputed data cause cities to 

shift and associate differently. One interesting result is the shift in Moscow’s cluster. In 

Sapol (2016), Moscow clusters with cities like Tokyo, Seoul, and Nagoya. We do not 

include those cities in our study, so we may expect that Moscow would shift closer to 

them if they are added. However, this is uncertain given they would be added in the 

presence of the additional variables we incorporate into our study. Future work can look 

at adding these cities as well as cities like Lahore, Pakistan or Paris, France.  

Sapol (2016) also makes the case that we should examine transitioning from a 

regional focus to a megacity focus given the importance of megacities in the future 

operating environment (FOE). We consider this in our analysis and generate a table of 

our results based on the major combatant commands (COCOM) which can be seen in 

Table 13. We do not show the names of each city but rather include the number of cities 

associated with each COCOM by cluster. We also apply red, orange, yellow and green 

outlines to align our clusters with the tiers from Sapol (2016) and the levels of 

connectedness from United States Army (2014), where green is highly connected (HC), 

yellow is moderately connected (MC), and orange and red are generally loosely 

connected (LC). 
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Table 13.   Count of Cities Aligned with Each U.S. COCOM by Cluster. 

 
Table 13 shows the number of cities in each cluster for each COCOM. We compare them to tiers 
of Sapol (2016) and United States Army (2014) using the green, yellow, orange, and red outlines 
such that green is HC, yellow is MC, and orange and red are LC. 

As shown in Table 13, we see that our clustering is indicative of the challenges 

facing commanders in the arc of instability. AFRICOM, CENTCOM, and PACOM 

dominate the cities that would be referred to as loosely connected in United States Army 

(2014) or tier 5 and tier 6 in Sapol (2016). PACOM clearly has the largest and most diverse 

problem set, including five cities considered to be loosely connected. These are likely to 

have higher incidences of organized crime, terrorism, and other crises that may require 

responses like humanitarian assistance and disaster relief due to their poor infrastructure 

and access to services. Additionally, they also face the dynamic megacity problem of 9 

cities that United States Army (2014) may refer to as moderately connected. They come 

from more stable regions but still have infrastructure, economic, and social challenges that 

can lead to destabilization. In contrast, CENTCOM only has five cities in this study but still 

has a dynamic and challenging problem because they all correspond to the loosely 

connected tier and have high risks of instability. Notably, in 2017, U.S. forces remain in 

Afghanistan conducting operations in the country where Kabul is located; Baghdad is 

located in Iraq where operations continue to occur against ISIS; and Iran (Tehran) 

continues to have an adversarial relationship with the U.S. and present substantial foreign 

policy challenges. In the other COCOM with a dynamic problem set, AFRICOM, we see 

that four of the five cities align with our loosely connected or high risk of instability 

clusters. With factions of Al-Qaeda in Egypt and Boko Haram operating in Nigeria, we see 

that AFRICOM faces its own challenges in supporting and ensuring stability in the region.  
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VI. CONCLUSIONS AND FUTURE WORK 

In this study, we use 41 different large urban areas across the globe and 33 

variables constructed from over 90 public sources to create clusters and identify what 

cities are similar or different in meaningful ways. With uncertainty in our data through 

103 missing values, we use a combination of data imputation and cluster ensembles to 

identify the sensitivities of our clusters to data uncertainty. We establish baseline clusters 

using Gower distances and the PAM algorithm based on observations with missing 

values, and then we compare these results to clustering with missing values imputed 

using the K-NN median method. We find that imputing missing values does not 

significantly change the clusters and primarily impacts the cities with larger amounts of 

missing data and looser connections to their baseline clusters. Finally, we randomly 

impute values and apply techniques from Hornik (2005) using the CLUE package to 

create an ensemble of 5,000 clusterings. This ensemble of clusterings identifies the 

sensitivities of clusterings to missing data and allows us to produce both hard and soft 

consensus clusterings. Our findings indicate that the consensus or average clustering for 

our data does not differ greatly from our baseline clusters, which demonstrates the 

stability of our data set. These methods and our approach to constructing the 33 variables 

in our data set not only help inform JWAC of the similarities and differences between the 

41 large urbans areas, they also provide an analytical approach for identifying for which 

cities more data is warranted. Furthermore, it provides an analytical framework for future 

work in this area. 

A. CONCLUSIONS 

As discussed in Chapters I and II, the arc of instability continues to shape our 

future security environment. It represents parts of the developing world where 

competition for resources, terrorism, political instability, and economic inequality make 

conditions ripe for conflict, which have pushed it to the forefront of American foreign 

policy decisions since the early 2000s (United States Marine Corps, 2015; Barnett 2004). 

Our results help inform some of the challenges of the arc of instability. The majority of 
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cities with the poorest infrastructure, lowest access to utilities, and poorest economies 

group together in clusters 4 and 5. And, we find that many of the cities from our data set 

that are in the arc of instability cluster with other cities within the arc of instability. Or, if 

they are not located in the arc, we find that they tend to cluster with other cities on the 

outside. In order to see this clearly, examine Figure 17. We display a map with the 

41cities from our study, along with the cluster to which they belong using our consensus 

or average clustering from the K-NN quantile sampling imputations.  

Figure 17.  Arc of Instability Map with Overlay of Cities and Consensus Clusters. 
Adapted from United States Marine Corps (2014). 

 
Figure 17 shows a point on the map for each city in our study as well as the cluster to 
which it belongs. Cities within the arc of instability are annotated in red, and cities 
outside the arc are annotated in green. As discussed in Chapter V, cities from clusters 4 
and 5 generally reside within the arc of instability, along with cluster 3. We distinguish 
cluster 3 because India is not included in the AOI in some literature e.g. Barnett (2004) 
but is included in others e.g. United States Marine Corps (2015). 

As we outline in Chapter II, Kilcullen (2013), United States Army (2014), and 

United States Marine Corps (2015), each make the case in different ways that the arc of 

instability will continue to be an important component to our future operating 

environment. And, cities that are located within the arc of instability face greater risks of 

requiring military action, either combat or HA/DR. However, we must also be cognizant 
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of cities that are not in the arc of instability but cluster with cities in the arc. Specifically, 

we note that Johannesburg, Mexico City, Lima, and Moscow all reside outside the arc but 

are most similar to cities within the arc. Hence, there may be something that the data is 

revealing to us about the nature of these cities and their future risks. United States Army 

(2014) and Kilcullen (2013) make note of the reality that competition for resources, 

growing income inequality, urbanization, and other socio-economic and demographic 

factors can increase the likelihood of instability in a particular city or region. Therefore, 

cities such as those may warrant closer attention from intelligence professionals, 

planners, and senior leaders.  

Our work also illustrates the benefits of combatant commands conducting 

information sharing and working in concert with one another on promoting stability. As 

displayed in Table 13, each cluster contains cities from multiple combatant commands. 

We know that these cities are, by definition, similar across their four pillars which 

suggests there may be events or dynamics occurring in one that may also drive future 

events in another. But, we do not advocate for a shift from the COCOM structure in favor 

of a megacity framework. Of the 41 cities we study, 21 are within the arc of instability 

and 10 of those reside solely in the PACOM area of responsibility. And, with the 

exception of PACOM, we notice cities in the other COCOMs do not face the same scope 

and complexity of their problem set. But, there may be value in potentially splitting 

PACOM into PACOM East/West or PACOM North/South. The area covered, swiftly 

growing populations, high potential for natural disasters, and competition for resources 

require a more detailed focus of effort that could warrant two separate COCOM 

structures. And, while we cannot predict with certainty the actual areas where instability 

or conflict will arise given current data limitations, we can further the discussion and 

identify the areas where effort can increase.  

In comparison to the previous work done in United States Army (2014) and Sapol 

(2016), our work adds more quantitative data in terms of the number of cities and 

especially the number of variable. In the case of United States Army (2014), we are able 

to achieve similar results without the use of expensive temporary duty trips while 

simultaneously incorporating more large urban areas. Additionally, our work lays out a 
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methodology for adding more cities to the work in the future. In contrast, United States 

Army (2014) may require site surveys, logistical support, or potentially special operations 

forces to gain deep insights into some of these large cities. This allows us to gain insights 

into cities without significant additional costs, which is particularly true for cities in 

countries where the U.S. has limited access. Our results also differ from the findings of 

Sapol (2016). We find that when we incorporate other factors beyond GDP per capita and 

population density, some of the clusters shift. While we note that some of the cities differ, 

we see that cities in India move from being in separate clusters in Sapol (2016) to being 

in the same cluster in our study. And, like Sapol (2016) cities in the arc of instability 

generally cluster together.  

B. FUTURE WORK 

Our study does not provide revolutionary insights into the megacity problem or 

capture detailed information regarding the interdependencies of megacity critical 

networks. These challenges are complex and require a substantial amount of data. We 

consider this a building block on previous studies and an effort to drive the conversation 

forward regarding the potential for future military operations in these large urban areas. 

As a result, we believe several different lines of effort exist for expanding this study. 

First, future researchers can leverage the data collection sources and techniques we use in 

this study to expand the number of variables and more accurately capture information. In 

previous chapters, we briefly highlight that data for access to emergency services does 

not adequately distinguish the cities into clusters. Future researchers can incorporate 

additional details like per capita number of beds, violent crime rates, or stations per 1000 

people in order to more accurately capture true access and support.  

Additionally, trade uses other means of transportation beyond waterways. Hence, 

researchers can look to adding throughput of passengers and freight through critical air 

and ground transportation nodes. While difficult to find in many cases, we also expect the 

daily or year throughput in dollars to have significance. Flights out or major airports 

being stopped, isolating main supply routes, and conducting naval blockades can all 

prevent the flow of goods and services into and out of a city. If we do this, the value of 
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throughput may signal losses to the city’s economy due to our operations. At the same 

time, we expect primary industry is also important to understanding the general make up 

of a megacity. Cities whose primary industry is manufacturing will inevitably contain 

more plants and warehouses, which is important to understand when preparing for 

combat operations. 

Military requirements and objectives also require attention from research of this 

nature. In our study, we select a combination of general data that pertains to our four 

pillars. However, combat operations or HA/DR support may require information 

pertaining to different types of infrastructure like radar sites or supply depots. Future 

work might solicit subject matter experts for their insights into the types of infrastructure 

and human geography data that will most benefit operations. While military specific data 

will likely prove difficult to collect, it will allow researchers to use the data and similar 

methodologies to ours in order to identify how cities cluster based on military 

requirements data.  

Additionally, researchers can look to adding cities to the study or changing the 

data imputation technique. Additional cities will continue to fill the dimensional space 

and potentially allow us to use more clusters. With more clusters, we have the 

opportunity to allow the representative observations or medoids to have shorter distances 

between them and the other observations within the cluster. Moreover, additional cities 

grant us more visibility on regions of interest to senior leaders and JWAC. We also 

suggest examining different data imputation techniques that are more specific to each 

individual variable. Finally, we suggest that a simple interactive tool be developed that 

allows analysts to explore megacity data of the type we have constructed using 

techniques outlined in this thesis.  
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APPENDIX A. SUMMARY DATA 

Table 14.   Summary Data for Continuous and Binary Variables in the Data Set 

 
Religion is not included in this table because it is a categorical variable. However, we note the 
counts for religion as follows: Christian (18), Islam (10), Hinduism (5), Chinese or Other 
Religion (4), Buddhism (1), and Vietnamese or Other Religion (1). 

Variable Mean Std. Deviation Percent Missing

Electricity Generation (MW) 6073.58 5985.90 0.00
Ground Water Sources 1.88 5.75 17.50
Reservoir/River/Lake Sources 7.03 15.31 12.50
Desalination Plants 0.06 0.24 12.50
Daily Water Dist. (million gal.) 664.45 494.23 0.00
Int'l Airports 1.80 1.20 0.00
Regional Airports 1.10 1.65 0.00
Seaport 0.48 0.51 0.00
Seaport (million TEUs) 5.67 11.69 0.00
Seaport (million tons) 26.58 80.92 0.00
Road Network (miles) 6343.27 14640.35 12.50
Rail Network (miles) 193.70 260.45 12.50
Telecomm Access (%) 80.75 27.84 20.00
Subway 0.42 0.50 0.00
Sanitation Access (%) 73.90 29.02 7.50
Hospitals 163.26 264.80 2.50
Police Stations 60.62 41.82 0.00
Fire Stations 96.82 130.34 0.00
Military Bases 13.18 19.17 5.00
State Capital 0.50 0.51 0.00
National Capital 0.50 0.51 0.00
GDP (billion USD) 298.47 331.46 2.50
High School Diploma (%) 68.84 23.91 27.50
Bachelor's Degree (%) 24.93 14.39 32.50
Literacy Rate (%) 83.21 16.23 20.00
Average Income 25696.35 29113.56 12.50
Poverty Rate (%) 18.49 15.04 17.50
Average Household Size 3.63 1.25 2.50
Pop Under 18-19 Yrs Old (%) 28.51 9.70 7.50
Pop  Over 65 Yrs Old (%) 8.93 4.71 10.00
Internet Access (%) 58.23 28.79 20.00
Pop Density (Per sq. mile) 12834.23 15777.65 0.00
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APPENDIX B. VARIABLE ESTIMATION 

In an optimal study scenario, we have access to data that perfectly estimate the 

desired variables. However, in practice, we recognize that this is often infeasible and 

variables will often contain intrinsic uncertainty. In order to establish baseline estimates 

for our study, many of the variables required proxies and additional calculations in order 

to obtain a reasonable level of information about the variables to which we sought. In the 

following sections of Appendix B., we outline the techniques and proxies we used to 

produce our variable estimates for those variables that required more approximation. And 

in general, we clarify that we make approximations for unavailable data cities using state 

or provincial level data when the other methods from this appendix do not produce 

results.  

A. ELECTRICITY GENERATION 

For electricity generation, we required a combination of proxies to get estimates 

and recognize these methods contain some inherent weaknesses. We sought data 

primarily on the amount of installed capacity (MW) in each city, but this information was 

not available for some of the cities in our study. As a result, we used electricity 

generation or electricity consumption as proxy variables for installed capacity in cases 

where the desired data was not available. We also encountered cities that had per capita 

level consumption data from previous years but no recent data. In these cases, we used 

the per capita figures and the current population to obtain an estimate for current levels of 

consumption. 

B. WATER SOURCES AND DISTRIBUTION 

We count one ground water aquifer listed by a city as a ground water source. And, 

we use a summation of the total number of lakes, other reservoirs, and rivers as the 

number of lakes/reservoirs/rivers variable. In the case of desalination, the majority of 

cities either do not currently have one or theirs will not become operational for the next 

few years. Hence, presence of a desalinations plant acts effectively as a binary variable. 

Sourcing data regarding water distribution required more indirect information. For 
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example, if a city did not identify their daily water distribution, they may indicate the per 

capita consumption per day or the daily water demand and some percentage of access. In 

the case of per capita consumption, we use the cities current population estimate to 

calculate the daily water distribution. And, in the case of percent access and demand, we 

simply multiple demand by the percent access. For clarity, we also not that we use water 

supplied instead of water demand in cases there the two numbers disagree. 

C. AIRPORTS 

For international and regional airports, we consider any airport that conducts 

flights out of the home country as international, and any airports that only operate within 

the country as regional.  

D. SEAPORTS 

For clarity, we note that we do not consider river ports unless they open directly 

to the ocean as is the case with London’s seaport. Additionally, we consider total 

throughput for both TEUs and metric tons. 

E. ROAD, RAIL NETWORKS, AND SUBWAYS 

For road networks, we include all paved roads and highways for the data that is 

available. In cases where the data is not available for both, we include only the data 

available without any estimation. In contrast, if the only data available is the road density, 

we convert this to the number of miles of road using the square area of the city. For rail 

networks, we have limited information regarding the amount of national or state rails that 

move through the city. Additionally, some of these cities include different types of rail 

networks including light rails, metros, subways, and heavy rails. For the purposes of this 

study we include data from all available rail networks.  

F.  TELECOMMUNICATIONS AND INTERNET ACCESS 

We combine these basic they face similar data collection challenges. We calculate 

these as the percentage of the population with access to a phone (landline or mobile) and 

the percent with access to the Internet. For cities that do not provide this information 
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directly, we use the number of subscriptions or users per 100 people. We use this as a 

proxy for percentage except in cases where the number of users or subscriptions per 100 

people are above 100. In those cases, we default to an assumption of full penetration and 

use a value of 99.00% as the variable input. 

G. GDP/GRDP AND AVERAGE INCOME 

Some cities did not contain readily available and current GDP and average 

income data. However, some contain per capita GDP or income. For per capital GDP we 

multiply this by the current population and where growth rates are not available. For 

clarity, we only use figures listed in current prices.  

H. POVERTY RATE 

We recognize that different countries determine what constitute poverty relative 

to their location standards of living. As a result, this data provides some challenges in 

determining similarities or differences. Where available, we use the percentage of 

persons living on $1 or less per day because it is universal. This was most common in 

African and Asian countries. Where we cannot find suitable data in that regard, we shift 

to using the local poverty rate where available.  

I. AGE DISTRIBUTION 

In order to estimate the age distribution for each city in our study, we required 

proxy variables for young people in some cases. Generally, the U.S. cities were the only 

ones that used under 18 and over 65 as part of their age distribution. In contrast, most 

foreign cities do not use this metric. Their data sources use under 19 for estimating young 

people. Given the small differential, we use 19 and under as a good proxy for the percent 

of young people in cities.  
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APPENDIX C. DATA SOURCES 

Variable Country Source 

Electricity Generation (MW) 

Afghanistan  Power Plans Around the World, 2016 

Argentina Buenos Aires City, 2010 

Bangladesh Power Grid Company of Bangladesh, 2016 

Brazil Ministry of Mines and Energy, 2015 

Canada Aplin, 2013 

China China Data Online, 2017 

Democratic Republic 
of the Congo UN Data, 2017 

Egypt Cairo Electricity Production Company, 2017 

India Indiastat, 2017 

Indonesia BPS, 2017 

Iran Tehran Times, 2016 

Iraq Kneoma, 2017 

Kenya Open Data for Africa, 2017d 

Mexico Government of Mexico, 2017 

Nigeria Open Data for Africa, 2017a 

Pakistan Kneoma, 2017 

Peru Ministry of Energy and Mines, 2015 

Philippines Philippine Government, 2016 

Russia Kneoma, 2017 

Saudi Arabia Kingdom of Saudi Arabia, 2017 

South Africa Eskom, 2017 

Thailand Metropolitan Electricity Authority, 2014 

Turkey Hurriyet Daily News, 2014 

United Kingdom Department of Business, Energy & Industrial 
Strategy 2016 

United States 
United States Energy Information 
Administration, 2017 

Vietnam Do, 2002 
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Variable Country  Sources 

Ground Water Sources 
Reservoir/River/Lake Sources 

Desalination Plants 

Afghanistan 
Campbell, 2015 

USAID, 2016 

USGS, 2009 

Argentina 
Buenos Aires City, 2010 

Engel, et al., 2011 

Bangladesh 

Brazil Tortajada, et al., 2006 

Brazil National Water Agency, 2010a 

Brazil National Water Agency, 2010b 
Canada Toronto, 2017b 
Canada Toronto, 2017c 

China 

China Data Online, 2017 

People’s Republic of China, 2009 

University of British Columbia, 1999 

Probe International Beijing Group, 2008 

Democratic Republic 
of the Congo Open Data for Africa, 2017e 

Egypt Open Data for Africa, 2017b 

Egypt Tour Egypt, 2017 

India 

Indiastat, 2017 

Delhi Government, 2015 

BCPT, 2017 

Chaterjee, 2014 

BWSSB, 2016 

HMWSSB, 2015 

Indonesia 
BPS, 2017 

Tutuko, 1998 

Iran  Nasseri, 2014 

Iraq 
Kneoma, 2017 

Barbooti, et al., 2010 

Kenya 
Karanja, 2011 

Nairobi City Water and Sewerage Company, 
2017 
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Variable Country  Sources 

Ground Water Sources 
Reservoir/River/Lake Sources 

Desalination Plants 

Mexico Tortajada, et al., 2006 
Nigeria Lagos State Government, 2013 

Pakistan 
Karachi Water & Sewerage Board, 2013 

DHA Cogen LTD, 2017 
Peru LIWA, 2014 
Philippines Republic of the Philippines, 2017 

Russia 
Mosvodokanal, 2017 

Landing and Planning, 2017 

Saudi Arabia 
Kingdom of Saudi Arabia, 2017 

Tortajada, et al., 2006 
South Africa Johannesburg Water, 2017 
Thailand Kneoma, 2017 

Turkey  
Turkey Statistical Institute, 2017b 

Demirci and Butt, 2001 
United Kingdom Greater London Authority, 2017 

United States 

New York City Government, 2015 

New York State, 2017 

The City of Newark, 2015 

City of Chicago, 2017b 

Los Angeles, 2017 

Orange County Water District, 2016 

MWRA, 2017 and BWSC, 2017 

City of Philadelphia, 2017b 
San Francisco Public Utilities Commission, 
2016 

East Bay Municipal Utility District 

Texas Water Development Board, 2014 

City of Fort Forth, 2017b 

City of Dallas, 2017 

Texas Water Development Board, 2017 

DC Water, 2017 

Arlington County, 2015 

Virginia American Water, 2017 

WSSC, 2017 

Fairfax Water, 2017 

Vietnam 
Institute for Global Environmental Studies, 
2007 
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Variable Country Sources 

Int’l Airports Regional 
Airports 

Afghanistan Google Maps Query 

Argentina Google Maps Query 

Bangladesh CAA, Bangladesh, 2006 

Brazil Google Maps Query 

Canada Google Maps Query 

China 
Ministry of Commerce, 2007 

Google Maps Query 

Democratic Republic 
of the Congo Google Maps Query 

Egypt Google Maps Query 

India Indiastat, 2017 

Indonesia Google Maps Query 

Iran Tehran, 2017 

Iraq Google Maps Query 

Kenya Nairobi Government, 2017d 

Mexico Google Maps Query 

Nigeria Google Maps Query 

Pakistan Google Maps Query 

Peru Google Maps Query 

Philippines Google Maps Query 

Russia Google Maps Query 

Saudi Arabia Google Maps Query 

South Africa Google Maps Query 

Thailand Google Maps Query 

Turkey Istanbul Government, 2017 

United Kingdom Google Maps Query 

United States United States Department of Transportation, 
2017 

Vietnam 
Google Maps Query 

Google Maps Query 
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Variable Country Sources 

Seaport Seaport (million 
TEUs) Seaport (million tons)  

Afghanistan Google Maps Query 

Argentina 
Buenos Aires City, 2010 

Buenos Aires Port, 2016 

Bangladesh Google Maps Query 

Brazil 
Google Maps Query 

Rio Port Authority, 2014 

Rio Port Authority, 2016 

Canada N/A 
China China Data Online, 2017 & IAPH, 2015 

Democratic Republic 
of the Congo Google Maps Query 

Egypt Google Maps Query 

India 
Indiastat, 2017 

Mumbai Port Trust, 2017 
Indonesia BPS, 2017 & IAPH, 2015 

Iran Google Maps Query 

Iraq Google Maps Query 

Kenya Google Maps Query 

Mexico Google Maps Query 

Nigeria 
Open Data for Africa, 2017a 

Nigerian Ports Authority, 2015 

Pakistan Karachi Port Trust, 2016 

Peru Peru National Port Authority, 2016 

Philippines Philippines Ports Authority, 2016 

Russia N/A 

Saudi Arabia Google Maps Query 

South Africa Google Maps Query 

Thailand 
ASEAN Ports, 2001 

IAPH, 2015 
Turkey MARDAS, 2012 & World Port Source, 2017 

United Kingdom 
Port of London Authority, 2014 

Port of London Authority, 2017 

United States 
United States Department of Transportation, 
2015 

Vietnam 
Vietnam Seaports Association, 2015a 

Vietnam Seaports Association, 2015b 
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Variable Country Source

Telecommunications Access 
(%) 

Afghanistan Kneoma, 2017 

Argentina 
Buenos Aires City, 2010 

Koop, 2015 

Bangladesh 
BTRC, 2015 

Bangladesh Population Estimate 2015 
Brazil N/A 
Canada N/A 
China China Data Online, 2017 

Democratic Republic 
of the Congo UN Data, 2017 
Egypt N/A 
India Telecom Regulation Authority of India, 2017 
Indonesia BPS, 2017 
Iran N/A 
Iraq Kneoma, 2017 
Kenya Open Data for Africa, 2017d 
Mexico INEGI, 2017 
Nigeria N/A 
Pakistan National Institute of Population Studies, 2013 

Peru National Institute of Statistics and Information, 
2015 

Philippines N/A 
Russia Kneoma, 2017 
Saudi Arabia N/A 
South Africa City of Johannesburg, 2017 
Thailand Kneoma, 2017 
Turkey N/A 
United Kingdom Kneoma, 2017 
United States United States Census Bureau, 2015b 
Vietnam Skuse, n.d 
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Variable Country Sources

Road Network (miles) 

Afghanistan N/A

Argentina Kneoma, 2017

Bangladesh Mahmud, 2014

Brazil Biderman, 2008

Brazil TomTom International, 2016 
Canada Toronto, 2012 

China 
Ministry of Commerce, 2007 

China Data Online, 2017 

Democratic Republic 
of the Congo UN Data, 2017 

Egypt Open Data for Africa, 2017b 

India Indiastat, 2017

Indonesia Jakarta Government, 2014 

Iran Kneoma, 2017

Kenya N/A

Mexico Mexico City, 2009

Nigeria Open Data for Africa, 2017a 

Pakistan Hussain, 2011

Peru Moreira, et al., 2013 

Philippines DPWH, 2016

Russia N/A

Saudi Arabia High Commission for the Development of 
ArRiyadh 

South Africa City of Johannesburg, 2017 

Thailand N/A

Turkey KGM, 2017

United Kingdom Kneoma, 2017 

United States 

The City of Chicago, 2017a 
The City of Los Angeles, 2008 

The City of Oakland, 2017a 
U.S. Department of Transportation, 2012 

New York City Government, 2013 

The City and County of San Francisco, 2017a 

City of Philadelphia, 2017a 
City of Fort Worth, 2017a 

Blessing, 2015 

Vietnam Japan International Cooperation Agency, 2004 
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Variable Country Sources

Rail Network (miles) Subway 

Afghanistan N/A

Argentina Buenos Aires City, 2010 

Bangladesh N/A

Brazil 
Biderman, 2008 

CARIOCA, 2017 

Rodrigues & Silveira, 2016 

Canada  Toronto Transportation Commission, 2013 
China China Data Online, 2017 

Democratic Republic 
of the Congo N/A 

Egypt Tour Egypt, 2017
India Indiastat, 2017 & Telangana Government, 2017 

Indonesia MRT Jakarta

Iran N/A

Iraq Kneoma, 2017

Kenya N/A

Mexico Mexico City, 2009

Nigeria LAMATA, 2017

Pakistan N/A

Peru Railway Technology, 2017 

Philippines N/A

Russia Moscow Metro, 2017 

Saudi Arabia 
High Commission for the Development of 
ArRiyadh 

Varinsky, 2016 

South Africa Gautrain Management Agency, 2016 

Thailand 
Fernquest, 2016 

Railway Technology, 2017 
Turkey TCDD, 2015 & Metro Istanbul, 2016 

United Kingdom London Councils, 2017 

United States 

Los Angeles County Metropolitan 
Transportation Authority, 2016 

Metropolitan Transit Authority, 2017 

Chicago Transit Authority, 2016 

Dallas Area Rapid Transit, 2017 

Bay Area Rapid Transit, 2017 

Vietnam N/A
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Variable Country Source 

Sanitation Access (%) 

Afghanistan Kneoma, 2017 

Argentina Engel, et al., 2011 

Bangladesh World Bank, 2016 

Brazil IBGE, 2010 

Canada N/A 

China National Bureau of Statistics of China, 2015 

Democratic Republic 
of the Congo UN Data, 2017 

Egypt Tour Egypt, 2017 

India Global Water Forum, 2012 

Indonesia World Bank, 2008 

Iran N/A 

Iraq Kneoma, 2017 

Kenya Open Data for Africa, 2017d 

Mexico UNICEF, 2013 

Nigeria Kunnuji, 2014 

Pakistan N/A 

Peru National Institute of Statistics and Information, 
2015 

Philippines World Bank, 2015 

Russia Kneoma, 2017 

Saudi Arabia Tortajada, et al., 2006 

South Africa City of Johannesburg, 2017 

Thailand Kneoma, 2017 

Turkey N/A 

United Kingdom N/A 

United States World Bank, 2017c 

Vietnam Van Leeuwen, Nyugen, & Dieperink, 2015 
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Variable Country Source

Hospitals 

Afghanistan Kneoma, 2017

Argentina Buenos Aires City, 2017 

Bangladesh Google Maps Query 

Brazil Google Maps Query 

Canada Toronto, 2017a

China China Data Online, 2017 

Democratic Republic 
of the Congo Google Maps Query 

Egypt Tour Egypt, 2017

India Indiastat, 2017

Indonesia Jakarta Government, 2017 

Iran Kneoma, 2017

Iraq Kneoma, 2017

Kenya Nairobi Governemt, 2017a 

Mexico Google Maps Query 

Nigeria Lagos State Government, 2013 

Pakistan Kneoma, 2017

Peru Google Maps Query 

Philippines Google Maps Query 

Russia Kneoma, 2017

Saudi Arabia Kingdom of Saudi Arabia, 2017 

South Africa City of Johannesburg, 2017 

Thailand Google Maps Query 

Turkey Istanbul Government, 2017 

United Kingdom UK Health Centre, 2017 

United States 

California Government, 2017 

Illinois Department of Public Health, 2016 

Indiana State Department of Health, 2017 

Maryland Government, 2017 & MHA, 2017 

New Hampshire Hospital Association,2017 

New York State, 2017 

PA Department of Health, 2013 

State of New Jersey, 2017 

Texas DHHS, 2012 

Washington, DC, 2017b 
Wisconsin Department of Health Services, 
2017 

Vietnam Ho Chi Minh City, 2005b 
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Variable Country Sources 

Police Stations 

Afghanistan Google Maps Query 

Argentina Ministry of Justice and Security,2017 

Bangladesh   

Brazil Google Maps Query 

Canada Toronto Police, 2017 

China Google Maps Query 

Democratic Republic 
of the Congo Google Maps Query 

Egypt Google Maps Query 

India Google Maps Query 

Indonesia Google Maps Query 

Iran Google Maps Query 

Iraq Google Maps Query 

Kenya Nairobi Government, 2017a 

Mexico Google Maps Query 

Nigeria Open Data for Africa, 2017a 

Pakistan Google Maps Query 

Peru Google Maps Query 

Philippines Google Maps Query 

Saudi Arabia Google Maps Query 

South Africa Google Maps Query 

Thailand Google Maps Query 

Turkey Istanbul Government, 2017 

United Kingdom City of London Police, 2014 
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Variable Country Sources

Police Stations 
United States 

Anaheim Police, 2017 

Arlington, 2017 

Boston Police Department, 2017 

Calvert County, 2017 

Charles County 2017 

Chicago Police, 2017 

City of Alexandria, 2017 

City of Gary, Indiana, 2017 

City of Leesburg, 2017 

City of Oakland, 2017b 

Dallas Police Department, 2017 

Fairfax County, 2017 

Fort Worth Police, 2017 

Jersey City Police Department, 2017 

LAPD, 2017 

Long Beach, 2017 

New York City Government, 2017 

Newark Police Department, 2017 

Orange County, 2017 

Philadelphia Police, 2017 

Stafford County Sheriff, 2017 

The City and County of San Francisco, 2017b 

The City of Kenosha, 2017 

They City of Falls Church, 2017 

Washington, DC, 2017a 

Vietnam Google Maps Query 
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Variable Country Sources 

Fire Stations 

Afghanistan Google Maps Query 

Argentina Google Maps Query 

Bangladesh Google Maps Query 

Brazil Google Maps Query 

Canada Toronto, 2017b 

China Google Maps Query 

Democratic Republic 
of the Congo Google Maps Query 

Egypt Google Maps Query 

India Google Maps Query 

Indonesia Jakarta Government, 2017 

Iran Google Maps Query 

Iraq Google Maps Query 

Kenya Nairobi Governemt, 2017b 

Mexico Google Maps Query 

Nigeria Lagos State Government, 2017 

Pakistan Google Maps Query 

Peru Google Maps Query 

Philippines Google Maps Query 

Russia Google Maps Query 

Saudi Arabia Google Maps Query 

South Africa City of Johannesburg, 2017 

Thailand Google Maps Query 

Turkey Istanbul Fire Department, 2017 

United Kingdom London Fire Brigade, 2017 

United States 

United States Fire Administration 

New York City Fire Department, 2014 

Newark Fire Department, 2017 

Jersey City, 2017 

Vietnam Google Maps Query 
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Variable Country Sources

Military Bases 

Afghanistan Google Maps Query 

Argentina Google Maps Query 

Bangladesh Google Maps Query 

Brazil N/A

Canada  N/A 

China GlobalSecurity.org, 2017

Democratic Republic 
of the Congo Google Maps Query 

Egypt Google Maps Query 

India Google Maps Query 

Indonesia Google Maps Query 

Iran  Google Maps Query 

Iraq Google Maps Query 

Kenya Google Maps Query 

Mexico Google Maps Query 

Nigeria Google Maps Query 

Pakistan Google Maps Query 

Peru Google Maps Query 

Philippines Google Maps Query 

Russia Google Maps Query 

Saudi Arabia Google Maps Query 

South Africa Google Maps Query 

Thailand Google Maps Query 

Turkey N/A

United Kingdom Google Maps Query 

United States Department of Defense, 2017 

Vietnam Google Maps Query 
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Variable Country Source 

State/Provincial Capital 
National Capital 

Afghanistan Kneoma, 2017 

Argentina Kneoma, 2017 

Bangladesh Kneoma, 2017 

Brazil Kneoma, 2017 

Brazil Kneoma, 2017 

Canada Kneoma, 2017 

China Kneoma, 2017 

Democratic Republic 
of the Congo Kneoma, 2017 

Egypt Kneoma, 2017 

India Kneoma, 2017 

Indonesia Kneoma, 2017 

Iran Kneoma, 2017 

Iraq Kneoma, 2017 

Kenya Kneoma, 2017 

Mexico Kneoma, 2017 

Nigeria Kneoma, 2017 

Pakistan Kneoma, 2017 

Peru Kneoma, 2017 

Philippines Kneoma, 2017 

Russia Kneoma, 2017 

Saudi Arabia Kneoma, 2017 

South Africa Kneoma, 2017 

Thailand Kneoma, 2017 

Turkey Kneoma, 2017 

United Kingdom Kneoma, 2017 

United States Kneoma, 2017 

Vietnam Kneoma, 2017 
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Variable Country Sources 

GDP (billion USD) 

Afghanistan Kneoma, 2017 

Argentina Buenos Aires City, 2010 

Bangladesh The University of Tokyo 

Brazil IBGE, 2010 

Canada Toronto, 2016 

China China Data Online, 2017 

Democratic Republic 
of the Congo UN Data, 2017 

Egypt Open Data for Africa, 2017b 

India Indiastat, 2017 

Indonesia BPS, 2017 

Iran Kneoma, 2017 

Iraq Kneoma, 2017 

Kenya Open Data for Africa, 2017d 

Mexico Kneoma, 2017 

Mexico Tortajada, et al., 2006 

Nigeria Open Data for Africa, 2017a 

Pakistan Lloyd’s, 2014 

Peru National Institute of Statistics and Information, 
2015 

Philippines Kneoma, 2017 

Russia Kneoma, 2017 

Saudi Arabia Kingdom of Saudi Arabia, 2017 

South Africa Open Data for Africa, 2017a 

Thailand Kneoma, 2017 

Turkey Turkey Statistical Institute, 2017a 

United Kingdom Eurostat, 2017 
United States United States Department of Commerce, 2015 

Vietnam Statistical Documentation and Service Center, 
2017 

Vietnam Ho Chi Minh City, 2005a 
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Variable Country Source 

High School Diploma (%) 
Bachelor’s Degree (%) 

Afghanistan N/A 

Argentina Buenos Aires City, 2010 

Bangladesh Kneoma, 2017 

Brazil Cidades, 2010a 

Brazil Cidades, 2010b 

Canada Statistics Canada, 2011 

China China Data Online, 2017 

Democratic Republic 
of the Congo N/A 

Egypt N/A 

India Indiastat, 2017 

Indonesia BPS, 2017 

Iran N/A 

Iraq N/A 

Kenya USAID, 2003 

Mexico INEGI, 2017 

Nigeria N/A 

Pakistan N/A 

Peru National Institute of Statistics and Information, 
2015 

Philippines N/A 

Russia Mosgorstat, 2010 

Saudi Arabia N/A 

Siuth Africa N/A 

Thailand N/A 

Turkey Kneoma, 2017 

United Kingdom N/A 

United States United States Census Bureau, 2015a 

Vietnam N/A 
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Variable Country Sources 

Literacy Rate (%) 

Afghanistan Kneoma, 2017 

Argentina Buenos Aires City, 2010 

Bangladesh Kneoma, 2017 

Brazil IBGE, 2010 

Canada N/A 

China China Data Online, 2017 

Democratic Republic 
of the Congo N/A 

Egypt Tour Egypt, 2017 

India Indiastat, 2017 

Indonesia BPS, 2017 

Iran Kneoma, 2017 

Iraq Kneoma, 2017 

Kenya N/A 

Mexico UNICEF, 2013 

Nigeria Open Data for Africa, 2017a 

Pakistan Kneoma, 2017 

Peru National Institute of Statistics and Information, 
2015 

Philippines Kneoma, 2017 

Russia N/A 

Saudi Arabia N/A 

South Africa City of Johannesburg, 2017 

Thailand Kneoma, 2017 

Turkey  N/A 

United Kingdom Kneoma, 2017 

United States 

Literacy Partners, 2017 

Los Angeles Almanac, 2017 

Mafrica, L., 2009 

Texas Department of Health and Human 
Services, 2003 

Literacy Coalition, 2017 

Reaves, 2010 

Alexander, 2007 

Vietnam 
Statistical Documentation and Service Center, 
2017 
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Variable Country Source 

Average Income (USD) 

Afghanistan The Asia Foundation, 2015 

Argentina Buenos Aires City, 2010 

Bangladesh The University of Tokyo 

Brazil IBGE, 2010 

Canada Statistics Canada, 2011 

China China Data Online, 2017 

Democratic Republic 
of the Congo N/A 

Egypt, Survey Explorer, 2017 

India Indiastat, 2017 

Indonesia Jakarta Government, 2017 

Iran Homylafayette, 2011 

Iraq N/A 

Kenya N/A 

Mexico UNICEF, 2013 

Nigeria N/A 

Pakistan N/A 

Peru National Institute of Statistics and Information, 
2015 

Philippines Kneoma, 2017 

Russia Kneoma, 2017 

Saudi Arabia N/A 

South Africa City of Johannesburg, 2017 

Thailand Kneoma, 2017 

Turkey Turkey Statistical Institute, 2017a 

United kingdom United Kingdom, 2017 

United States United States Census Bureau, 2015a 

Vietnam Nam, 2016 
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Variable Country Source 

Poverty Rate (%)  

Afghanistan Kneoma, 2017 

Argentina N/A 

Bangladesh Sohel, 2014 

Brazil Cidades, 2010a 

Brazil Cidades, 2010b 
Canada Toronto, 2013 
Canada Government of Canada, 2017 

China China Data Online, 2017 

Democratic Republic 
of the Congo Open Data for Africa, 2017e 

Egypt Open Data for Africa, 2017b 

India Indiastat, 2017 

Indonesia BPS, 2017 

Iran Homylafayette, 2011 

Iraq Kneoma, 2017 

Kenya Open Data for Africa, 2017d 

Mexico INEGI, 2017 

Nigeria Open Data for Africa, 2017a 

Pakistan News Reports, 2013 

Peru National Institute of Statistics and Information, 
2015 

Philippines Kneoma, 2017 

Russia Zykov, 2015 

Saudi Arabia N/A 

South Africa City of Johannesburg, 2017 

Thailand Kneoma, 2017 

Turkey Turkey Statistical Institute, 2017a 

United Kingdom Trust for London and New Policy Institute, 
2015 

United States United States Census Bureau, 2015a 

Vietnam Tuoitre News, 2014 
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Variable Country Source 

Average Household Size 

Afghanistan Kneoma, 2017 

Argentina Buenos Aires City, 2010 

Bangladesh Kneoma, 2017 

Brazil IBGE, 2010 

Canada Statistics Canada, 2011 

China China Data Online, 2017 

Democratic Republic 
of the Congo Open Data for Africa, 2017e 

Egypt Tour Egypt, 2017 

India Indiastat, 2017 

Indonesia BPS, 2017 

Iran Kneoma, 2017 

Iraq Kneoma, 2017 

Kenya USAID, 2003 

Mexico Kneoma, 2017 

Nigeria Open Data for Africa, 2017a 

Pakistan Kneoma, 2017 

Peru N/A 

Philippines Kneoma, 2017 

Russia Mosgorstat, 2010 

Saudi Arabia Kneoma, 2017 

South Africa City of Johannesburg, 2017 

Thailand Kneoma, 2017 

Turkey Turkey Statistical Institute, 2013c 

Turkey Turkey Statistical Institute, 2017a 

United Kingdom Nomis, 2011 

United States United States Census Bureau, 2015a 

Vietnam Ministry of Planning and Investment, 2011b 
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Variable Country Source

Pop Under 18–19 Yrs Old 
(%) Pop Over 65 Yrs Old (%) 

Afghanistan Kneoma, 2017

Argentina Buenos Aires City, 2010 

Bangladesh N/A

Brazil IBGE, 2010

Canada Statistics Canada, 2011 

China China Data Online, 2017 

Democratic Republic 
of the Congo Open Data for Africa,2017e 

Egypt Open Data for Africa, 2017b 

India Indiastat, 2017

Indonesia BPS, 2017

Iran Kneoma, 2017

Iraq Kneoma, 2017

Kenya N/A

Mexico INEGI, 2017

Nigeria Lagos State Government, 2013 

Pakistan Kneoma, 2017

Peru National Institute of Statistics and Information, 
2015 

Philippines Kneoma, 2017

Russia Mosgorstat, 2010

Saudi Arabia Kingdom of Saudi Arabia, 2017 

South Africa Open Data for Africa, 2017c 

Thailand N/A

Turkey Turkey Statistical Institute, 2017a 

United Kingdom Nomis, 2011 

United States United States Census Bureau, 2015a 

Vietnam Ministry of Planning and Investment, 2011a 
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Variable Country Source 

Internet Access (%) 

Afghanistan Kneoma, 2017 

Argentina Buenos Aires City, 2010 

Bangladesh Kneoma, 2017 

Brazil IBGE, 2010 

Canada N/A 

China CINIC, 2017 

Democratic Republic 
of the Congo UN Data, 2017 

Egypt N/A 

India   

Indonesia BPS, 2017 

Iran N/A 

Iraq Kneoma, 2017 

Kenya N/A 

Mexico INEGI, 2017 

Nigeria N/A 

Pakistan National Institute of Population Studies, 2013 

Peru National Institute of Statistics and Information, 
2015 

Philippines Kneoma, 2017 

Russia Yandex, 2016 

Saudi Arabia Kingdom of Saudi Arabia, 2017 

South Africa City of Johannesburg, 2017 

Thailand Kneoma, 2017 

Turkey N/A 

United Kingdom Kneoma, 2017 

United States United States Census Bureau, 2015b 

Vietnam Cimigo, 2011 
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Variable Country Source 

Pop Density (per sq. mile) 

Afghanistan Kneoma, 2017 

Argentina Engel, et al., 2011 

Bangladesh Kneoma, 2017 

Brazil Cidades, 2010a 

Brazil Cidades, 2010b 

Canada Statistics Canada, 2011 

China China Data Online, 2017 

Democratic Republic 
of the Congo Open Data for Africa, 2017a 

Egypt Tour Egypt, 2017 

India Indiastat, 2017 

Indonesia BPS, 2017 

Iran Kneoma, 2017 

Iraq Kneoma, 2017 

Kenya Open Data for Africa, 2017d 

Mexico Kneoma, 2017 

Nigeria Open Data for Africa, 2017a 

Pakistan United Nations, 2015 

Peru National Institute of Statistics and Information, 
2015 

Philippines Kneoma, 2017 

Russia Kneoma, 2017 

Saudi Arabia Kneoma, 2017 

South Africa City of Johannesburg, 2017 

Thailand Kneoma, 2017 

Turkey Kneoma, 2017 

United Kingdom London Councils, 2017 

United States United States Census Bureau, 2015 

Vietnam Statistical Documentation and Service Center, 
2017 
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Variable Country Source 

Primary Religion 

Afghanistan Central Intelligence Agency, 2017 

Argentina Central Intelligence Agency, 2017 

Bangladesh Central Intelligence Agency, 2017 

Brazil Central Intelligence Agency, 2017 

Brazil Central Intelligence Agency, 2017 

Canada Central Intelligence Agency, 2017 

China Central Intelligence Agency, 2017 

Democratic Republic 
of the Congo 

Central Intelligence Agency, 2017 

Egypt Central Intelligence Agency, 2017 

India Central Intelligence Agency, 2017 

Indonesia Central Intelligence Agency, 2017 

Iran Central Intelligence Agency, 2017 

Iraq Central Intelligence Agency, 2017 

Kenya Central Intelligence Agency, 2017 

Mexico Central Intelligence Agency, 2017 

Nigeria Central Intelligence Agency, 2017 

Pakistan Central Intelligence Agency, 2017 

Peru Central Intelligence Agency, 2017 

Philippines Central Intelligence Agency, 2017 

Russia Central Intelligence Agency, 2017 

Saudi Arabia Central Intelligence Agency, 2017 

South Africa Central Intelligence Agency, 2017 

Thailand Central Intelligence Agency, 2017 

Turkey Central Intelligence Agency, 2017 

United Kingdom Central Intelligence Agency, 2017 

United States Central Intelligence Agency, 2017 

Vietnam Central Intelligence Agency, 2017 
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